#' Relative Abundance Plot
#'
#' For creating nice microbiome plots
#'
#' @param phylo_ob Phyloseq object with metadata in sample_data.
#' @param predictor Predictor of interest for statistics/plotting in sample_data.
#' @param type Taxonomic rank from tax_table, case insensitive; default is "genus".
#' @param relative_abun Use relative abundances, else absolute; default is TRUE.
#' @param id Define id variable for mixed models.
#' @param xlabs X-axis label
#' @param ylabs Y-axis label
#' @param main Title of plot
#' @param violin Use geom_violin for plotting, else boxplot; default is TRUE.
#' @param violin_scale Scale option for geom_violin; default is "width".
#' @param legend_title Legend title; default is name of predictor.
#' @param N_taxa Number of taxa to be plotted; default is 15.
#' @param By_median Order plot by median abundances, else mean abundances; default is TRUE.
#' @param no_other_type Taxa in lower abundances than top N_taxa, are grouped as "other", this will remove this group from the plot; default is FALSE.
#' @param legend_names Define variable names for legend text.
#' @param Time Time variable name for longitudinal datasets.
#' @param Timepoint Value in variable @Time to select.
#' @param Strata Name of variable for stratification;
#' @param Strata_val Value in variable @Strata to keep; default is 1.
#' @param no_legends Removes legend; default is FALSE.
#' @param no_names Removes taxa names; default is FALSE.
#' @param italic_names Taxa names will be in italic e.g. usable for family, genus, species levels; default is TRUE
#' @param Only_sig Only keep significant taxa; default is FALSE.
#' @param log Present plot on a log scale; default is TRUE.
#' @param log_max Maximum value of log-axis options:1, 10, 100; default is 100.
#' @param stat_out Outputs a data.frame with statistics to Global environment; default is FALSE.
#' @param p_val Displays p-values on plot; default is TRUE.
#' @param p_stars Shows stars instead of p-values; default is FALSE.
#' @param stats Select type of statistical test; options: "non-parametric", "parametric", "mixed", "mgs_feature", "maaslin2"; default is "non-parametric".
#' @param p_adjust adjust p-values; default is "FALSE.
#' @param p_adjust_method options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"; default is "fdr".
#' @param p_adjust_full correction applied for all taxa in the dataset; default is FALSE.
#' @param colors define list of colors for plot. If not color brewer will be used; default is NULL.
#' @param color_by define taxonomic rank to color by; default is NULL.
#' @param order Order by abundance, else alphabetically; default is TRUE.
#' @param reverse Flip taxa order; default is FALSE.
#' @param list_taxa A list of specific taxa names to be analyzed; default is NULL.
#' @param select_taxa Choose all taxa from one or more taxonomic variables, eg. "Staphylococcus" or "Staph" or "coccus" or c("staph",bifido"); default is NULL.
#' @param select_type Taxonomic rank of the @select_taxa; default is "genus".
#' @param bar_chart Choose to make bar chart; default is FALSE.
#' @param bar_chart_stacked Produce stacked bar chart; default is FALSE
#' @param percent Print percentages on bar chart; default is FALSE.
#' @param facet_wrap Facet wrap chart by variable; eg. Time; default is NULL.
#' @param facet_label Facet wrap labels; default is NULL.
#' @param facet_n Show n for each facet; default is TRUE.
#' @param order_by Choose variable to order the selected taxa by; eg. Time; default is Time.
#' @param order_val Choose value for @order_by; default is NULL.
#' @param text_angle_x Choose value for rotation of axis-text; default is 0.
#' @param rank Taxonomic rank from tax_table, replaces "type", case insensitive; default is "genus".
#' @param select_rank Taxonomic rank of the @select_taxa, replaces "select_type"; default is "genus".
#'
#' @import ggplot2 phyloseq metagenomeSeq dplyr tidyr RColorBrewer lmerTest Maaslin2
#' @return A ggplot
#' @export
rabuplot <- function(phylo_ob,
predictor="none",
type="genus",
relative_abun=TRUE,
id=NULL,
xlabs = "Relative abundance (%)",
ylabs = "Average relative abundance",
main = "Relative abundance plot",
violin=TRUE,
violin_scale = "width",
legend_title=predictor,
N_taxa=NULL,
By_median=TRUE,
no_other_type=FALSE,
legend_names=NULL,
Time="Time",
Timepoint=NULL,
Strata=NULL,
Strata_val="1",
no_legends = FALSE,
no_names=FALSE,
italic_names=TRUE,
Only_sig=FALSE,
log=TRUE,
log_max=100,
stat_out=FALSE,
p_val = TRUE,
p_stars=FALSE,
stats="non-parametric",
p_adjust=FALSE,
p_adjust_method="fdr",
p_adjust_full=FALSE,
colors=NULL,
color_by=NULL,
order=TRUE,
reverse=FALSE,
list_taxa=NULL,
select_taxa=NULL,
select_type="genus",
bar_chart=FALSE,
bar_chart_stacked=FALSE,
facet_wrap=NULL,
facet_label=NULL,
facet_n=TRUE,
percent=FALSE,
order_by="Time",
order_val=NULL,
text_angle_x=0,
rank=NULL,
select_rank=NULL
)
{
if(!is.null(list_taxa) & is.null(N_taxa)) N_taxa = length(list_taxa)
if(is.null(N_taxa) & is.null(list_taxa)) N_taxa=15
if(!is.null(rank)) type <- rank
if(!is.null(select_rank)) select_type <- select_rank
options(dplyr.summarise.inform = FALSE)
if(bar_chart_stacked==TRUE) {
bar_chart=TRUE
p_val=FALSE
}
if(predictor=="none") {
sample_data(phylo_ob)$none <- "All samples"
p_val=FALSE
if(bar_chart_stacked==FALSE & is.null(color_by)) no_legends = TRUE
}
phylo_ob <- prune_samples(sample_sums(phylo_ob)>0,phylo_ob) #removes empty samples;
otu_mat <- as(otu_table(phylo_ob), "matrix")
if(taxa_are_rows(phylo_ob)) otu_mat <- t(otu_mat)
if(!is.null(facet_wrap)) index <- !is.na(get_variable(phylo_ob, predictor)) & !is.na(get_variable(phylo_ob, facet_wrap))
else index <- !is.na(get_variable(phylo_ob, predictor))
if(length(unique(index)) !=1) message(paste(length(which(index==F)), "samples have been removed from full dataset (predictor/facet_wrap NAs)"))
otu_mat <- otu_mat[index,]
otu_mat <- otu_mat[,colSums(otu_mat)>0] #removes empty OTUs;
OTU_index <- colnames(otu_mat)
tax <- as(tax_table(phylo_ob), "matrix") %>% data.frame(stringsAsFactors=FALSE)
tax <- tax[rownames(tax) %in% OTU_index,]
tax[is.na(tax)] <- "unclassified"
tax[tax==""] <- "unclassified"
names(tax) <- tolower(names(tax))
type <- tolower(type)
if(!is.null(select_type)) select_type <- tolower(select_type)
tax$OTU <- rownames(tax)
samp <- data.frame(sample_data(phylo_ob), stringsAsFactors=TRUE)
samp <- samp[index,]
if(is.null(facet_wrap)) samp$wrap <- ""
if(!is.null(facet_wrap)) samp$wrap <- samp[,facet_wrap]
if(!is.null(Timepoint)){
index <- rownames(samp[(samp[,Time] ==Timepoint),])
otu_mat <- otu_mat[rownames(otu_mat) %in% index,]
otu_mat <- otu_mat[,colSums(otu_mat)>0] #removes empty OTUs;
OTU_index <- colnames(otu_mat)
tax <- tax[rownames(tax) %in% OTU_index,]
samp <- samp[rownames(samp) %in% index,]
}
list <-as.character(tax[,type])
unique_tax <- unique(list)
abund <- as.data.frame(matrix(rep(0,(length(unique_tax)*nrow(otu_mat))),ncol=length(unique_tax)))
row.names(abund) <- row.names(otu_mat)
names(abund) <- unique_tax
for(i in names(abund)){
if(is.array(otu_mat[,list==i])) abund[,i] <- rowSums(otu_mat[,list== i])
else abund[,i] <- otu_mat[,list== i]
}
abund_org <- abund
if(relative_abun==TRUE) abund <- apply(abund,1,function(x) x/sum(x)) %>% t %>% as.data.frame()
abund_all <- abund
if (is.null(list_taxa) & !is.null(select_taxa)) {
list_taxa <- NULL
for(i in 1:length(select_taxa)){
list_taxa <- c(list_taxa,(as.character(unique(tax[grep(select_taxa[[i]],tax[,select_type],ignore.case=TRUE),type]))))
}
}
if (!is.null(list_taxa)) {
if (is.null(N_taxa)) N_taxa <- length(list_taxa)
abund <- abund[,colnames(abund) %in% list_taxa, drop = FALSE]
unique_tax <- names(abund)
}
if(length(abund)>1){
index <- !is.na(rownames(samp))
if (!is.null(order_val)) index <- samp[,order_by] ==order_val
abund <- abund[,order(-colSums(abund[index,]))]
if (By_median) abund <- abund[,order(-apply(abund[index,], 2, median))]
if("unclassified" %in% unique_tax) abund <- abund[c(setdiff(names(abund), "unclassified"),"unclassified")] #Move unclassified to end
if(N_taxa<length(unique_tax)) abund <- abund[-(length(unique_tax)-(length(unique_tax)-N_taxa)+1):-length(unique_tax)]
if(no_other_type==FALSE) abund[, paste("Other",type)] <- rowSums(abund_all[,!names(abund_all) %in% names(abund)])
}
index <- !is.na(rownames(samp))
if(!is.null(Strata)) index <- samp[,Strata]==Strata_val
samp2 <- samp %>% filter(index)
if(p_val==TRUE & (bar_chart==FALSE | (bar_chart==TRUE & bar_chart_stacked==FALSE))){
if(p_adjust_full ==TRUE | stats=="mgs_feature"){
abund2 <- abund_org %>% filter(index)
if(relative_abun==TRUE & stats!="mgs_feature") abund2 <- apply(abund2,1,function(x) x/sum(x)) %>% t %>% as.data.frame()
}
else abund2 <- abund %>% filter(index)
if(stats=="mgs_feature" & length(levels(factor(samp2[,predictor])))>2){
stats="non-parametric"
message("MGS not available for >2 predictors, switching to non-parametric")
}
if(stats=="mixed" & is.null(id)){
stats="non-parametric"
message("No id variable for mixed model, switching to non-parametric")
}
if(stats=="mixed"){
message("Mixed model statistics")
pred <- samp2[,predictor]
id <- samp2[,id]
if(!is.null(facet_wrap)) {
message(paste0("Using ",facet_wrap," as mixed model group variable"))
facet <- samp2[,"wrap"]
pval <- cbind(abund2,pred,id,facet) %>% as_tibble() %>%
gather(variable, value,-"pred",-"id",-"facet") %>%
group_by(variable) %>%
summarize(pval = lmerTest::lmer(value ~ pred + factor(facet) + (1 | id)) %>% anova %>% filter(row_number()==1) %>% .$'Pr(>F)', .groups = 'drop')
}
else {
message(paste0("No group variable defined for mixed model in facet_wrap"))
pval <- cbind(abund2,pred,id) %>% as_tibble() %>%
gather(variable, value,-"pred",-"id") %>%
group_by(variable) %>%
summarize(pval = lmerTest::lmer(value ~ pred + (1 | id)) %>% anova %>% .$'Pr(>F)', .groups = 'drop')
}
pval <- pval %>% mutate(wrap="Mixed",p_adjust=p.adjust(pval, p_adjust_method))
pval$wrap <- factor(pval$wrap,levels=c(levels(factor(samp2[,facet_wrap])),"Mixed"))
}
else {
pval <- data.frame()
for (i in 1:length(unique(samp2$wrap))){
index <- samp2$wrap==unique(samp2$wrap)[[i]]
abund3 <- abund2 %>% filter(index)
pred <- samp2[index,predictor]
# test with featureModel
if(stats=="mgs_feature"){
mgs <- metagenomeSeq::newMRexperiment(counts = t(abund3))
mgsp <- metagenomeSeq::cumNormStat(mgs)
mgs <- metagenomeSeq::cumNorm(mgs, mgsp)
mod <- model.matrix(~as.numeric(pred == unique(pred)[1]))
if(length(unique(samp2$wrap))>1) message(paste0("MGS FeatureModel for facet_wrap = ",unique(samp2$wrap)[[i]]))
else message("MGS FeatureModel")
mgsfit <- metagenomeSeq::fitFeatureModel(obj=mgs,mod=mod)
pval_tmp <- data.frame(variable=mgsfit$taxa,pval=mgsfit$pvalues)
}
if(stats=="non-parametric"){ #Kruskal-Wallis
if(i==1) message("Non-parametric statistics")
pval_tmp <- cbind(abund3,pred) %>% as_tibble() %>%
gather(variable, value,-"pred") %>%
group_by(variable) %>%
summarize(pval = kruskal.test(value ~ pred)$p.value, .groups = 'drop')
}
if(stats=="parametric"){
if(i==1) message("Parametric statistics")
pval_tmp <- cbind(abund3,pred) %>% as_tibble() %>%
gather(variable, value,-"pred") %>%
group_by(variable) %>%
summarize(pval = oneway.test(value ~ pred)$p.value, .groups = 'drop')
}
if(stats=="maaslin2"){ #Maaslin2
if(i==1) message("Maaslin2 statistics")
test_set <- setNames(abund3, paste0('X', seq_along(abund3)))
capture.output({fit_data <- Maaslin2::Maaslin2(
test_set, data.frame(pred) %>% data.frame(row.names = rownames(test_set)), output = tempdir(),
fixed_effects = 'pred',
normalization = 'NONE',
transform = "LOG",
min_abundance = 0.0,
min_prevalence = 0.0,
min_variance = 0.0,
plot_scatter = FALSE,
plot_heatmap = FALSE,
standardize = FALSE)$results
}, file = nullfile())
pval_tmp <- data.frame(variable=names(abund3),pval=fit_data[match(names(test_set),fit_data$feature),"pval"])
}
pval_tmpe <<- pval_tmp
pval_tmp <- pval_tmp %>%
mutate(wrap=unique(samp2$wrap)[[i]],p_adjust=p.adjust(pval, p_adjust_method))
pval <- rbind(pval,pval_tmp)
}
}
if(p_adjust) message(paste(p_adjust_method,"correction applied for",length(unique(pval$variable)),"taxa"))
}
bacteria <- rev(names(abund))
subset <- cbind(samp[!names(samp) %in% bacteria], abund) #fjerner evt eksisterende navne fra dataset og merger;
subset$predictor2 <- as.factor(subset[,predictor])
subset$ID <- rownames(subset)
if(!is.null(Strata)) subset[,Strata] <- as.factor(subset[,Strata])
if(!is.null(facet_wrap)){
subset$wrap <- as.factor(subset[,facet_wrap])
if(!is.null(Strata))
molten <- subset[,c("ID",paste(bacteria),"predictor2",Strata,"wrap")] %>% gather(variable, value,-"predictor2",-"ID",-all_of(Strata),-"wrap")
else
molten <- subset[,c("ID",paste(bacteria),"predictor2","wrap")] %>% gather(variable, value,-"predictor2",-"ID",-"wrap")
}
if(is.null(facet_wrap)){
if(!is.null(Strata))
molten <- subset[,c("ID",paste(bacteria),"predictor2",Strata)] %>% gather(variable, value,-"predictor2",-"ID",-all_of(Strata))
else
molten <- subset[,c("ID",paste(bacteria),"predictor2")] %>% gather(variable, value,-"predictor2",-"ID")
}
if(!is.null(color_by)){
molten[molten$variable != paste("Other",type),"colvar"] <- molten %>% dplyr::filter(variable != paste("Other",type)) %>% .[,"variable"] %>% match(tax[,type]) %>% tax[.,color_by] %>% as.character
molten[molten$variable == paste("Other",type),"colvar"] <- paste("Other",color_by) %>% as.character
}
molten$variable <- gsub('_',' ',molten$variable)
if(order) ordered <- unique(molten$variable) #level order
if(!order) ordered <-sort(unique(molten$variable))#level order alphabetically
molten$variable <- factor(molten$variable, levels=ordered)
if(is.null(color_by)) molten$colvar <- molten$variable
if(!is.null(Strata)) molten <- molten[which(molten[,Strata]==Strata_val), ]
if(is.null(colors)){
cols <- c(brewer.pal(8,"Set1"), brewer.pal(7,"Dark2"),brewer.pal(7,"Set2"),brewer.pal(12,"Set3"),brewer.pal(7,"Accent"),brewer.pal(12,"Paired"),"gray")
cols <- cols[1:length(levels(factor(molten$predictor2)))]
}
if(!is.null(colors)) cols <- colors
if(bar_chart==TRUE & bar_chart_stacked==FALSE & is.null(legend_names)) legend_names <- as.character(levels(factor(molten$predictor2)))
if(is.null(legend_names)) legend_names <- as.character(levels(factor(molten$predictor2)))
ordered2<- rev(unique(molten$colvar))
if(reverse){
if(bar_chart==FALSE) {
molten$predictor2 <- factor(molten$predictor2, levels=rev(levels(molten$predictor2)))#manual faceting for levels;
legend_names <- rev(legend_names)
cols <- rev(cols)
}
if(bar_chart==TRUE) {
molten$colvar <- factor(molten$colvar, levels=rev(levels(factor(molten$colvar))))#manual faceting for levels;
molten$variable <- factor(molten$variable, levels=rev(levels(factor(molten$variable))))
cols <- rev(cols)
ordered2<- rev(ordered2)
}
}
if(bar_chart){
log=FALSE
cols <- c(brewer.pal(8,"Set1"), brewer.pal(7,"Dark2"),brewer.pal(7,"Set2"),brewer.pal(12,"Set3"),brewer.pal(7,"Accent"),brewer.pal(12,"Paired"),"gray")
# ordered <- levels(factor(molten$colvar))
if(is.null(color_by) & bar_chart_stacked==FALSE) cols <- cols[1:length(levels(factor(molten$predictor2)))]
else cols <- cols[c(1:length(levels(factor(molten$colvar)))-1,length(cols))]
if(!is.null(colors)) cols <- colors
if(is.null(color_by) & reverse==FALSE) cols <- rev(cols)
if(!is.null(color_by) & reverse==TRUE) cols <- rev(cols)
if(is.null(facet_wrap)) molten$wrap <- ""
molten_mean <- molten %>%
dplyr::group_by(variable,predictor2,wrap,colvar) %>%
dplyr::summarize(value = mean(value))
molten_mean$colvar <- factor(molten_mean$colvar, levels=ordered2)
}
#Calculate pvalue for outcomes
if(p_val==TRUE & ((bar_chart==TRUE & bar_chart_stacked==FALSE) | bar_chart==FALSE) & is.null(color_by)){
if(is.null(facet_wrap)) molten$wrap <- ""
if(!is.null(facet_wrap)) {
pval <- data.frame(pval=pval[gsub('_',' ',pval$variable) %in% ordered,]$pval,p_adjust=pval[gsub('_',' ',pval$variable) %in% ordered,]$p_adjust, variable=gsub('_',' ',pval[gsub('_',' ',pval$variable) %in% ordered,]$variable),wrap=pval[gsub('_',' ',pval$variable) %in% ordered,]$wrap)
}
else {
pval <- data.frame(pval=pval[gsub('_',' ',pval$variable) %in% ordered,]$pval,p_adjust=pval[gsub('_',' ',pval$variable) %in% ordered,]$p_adjust, variable=gsub('_',' ',pval[gsub('_',' ',pval$variable) %in% ordered,]$variable))
if(length(pval$variable)-length(ordered)<0) pval <- pval[match(pval$variable,ordered[length(pval$variable)-length(ordered)]),]
}
pval$predictor2 <- molten$predictor2[1]
pval$pval <- ifelse(is.na(pval$pval),1,pval$pval)
pval$p_adjust <- ifelse(is.na(pval$p_adjust),1,pval$p_adjust)
if(Only_sig){
index <- pval[pval$pval<0.05,"variable"]
molten <- molten[molten$variable %in% index,]
pval <- pval[pval$pval<0.05,]
}
if(stat_out){
median_iqr <<- molten %>% dplyr::group_by(variable, predictor2) %>% dplyr::summarize( N = length(value),median = median(value)*100,Q1=quantile(value, 1/4)*100,Q3=quantile(value, 3/4)*100, IQR = IQR(value)) %>% as.data.frame
pval_out <<- pval
mean_sd <<- molten %>% dplyr::group_by(variable, predictor2) %>% dplyr::summarize( N = length(value),mean = mean(value)*100,sd=sd(value)*100) %>% as.data.frame
}
}
if(bar_chart==FALSE){
if(ncol(tax)>=6) molten$value <- molten$value+1e-6 #add pseudocount for log scale 0;
else molten$value <- molten$value+0.001 #add pseudocount for log scale 0;
ordered <- levels(factor(molten$colvar))
p <- ggplot(molten, aes(x=variable, y=value, fill=predictor2)) +
{if(violin){geom_violin(scale = violin_scale,width = 0.65, position=position_dodge(width=0.9),size=1, color="#00000000")} else {geom_boxplot(width = 0.55, position=position_dodge(width=0.8),size=0.3,outlier.size = 0,outlier.color = "grey")}}+
{if(violin){stat_summary(fun=median, fun.min = min, fun.max = max, geom="point", size=0.8, color="black", position=position_dodge(width=0.9))} else {stat_summary(fun=median, fun.min = min, fun.max = max, geom="point", size=0.8, color="#00000000", position=position_dodge(width=0.9))}}+ theme_bw() + theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),legend.key = element_blank(),legend.text=element_text(size=12),legend.key.size = unit(0.5, "cm"))+ coord_flip() +xlab(NULL)+ylab(xlabs)+ggtitle(main)
if(length(unique(molten$variable))>1) p <- p+ geom_vline(xintercept=seq(1.5, length(unique(molten$variable))-0.5, 1),lwd=0.2, colour="grey")
p <- p + scale_fill_manual(values =cols,labels=legend_names) + guides(fill = guide_legend(title=legend_title, reverse = TRUE,override.aes = list(linetype=0, shape=16,color=rev(cols),size=5, bg="white")))
}
if(bar_chart==TRUE){
if(bar_chart_stacked==TRUE)
p <- ggplot(molten_mean,aes(x=factor(predictor2,levels=legend_names,labels=legend_names),y=value, fill=variable)) + theme_bw()+geom_bar(stat="identity")+ theme_bw() + theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),legend.key = element_blank(),axis.title=element_text(size=14),legend.text=element_text(size=12), axis.text = element_text(size = 12),strip.text = element_text(size = 12),legend.key.size = unit(0.5, "cm"),text=element_text(size=12)) +xlab(NULL)+ylab(ylabs)+ggtitle(main) + scale_fill_manual(values =cols,labels=ordered) + guides(fill = guide_legend(title=NULL))
if(bar_chart_stacked==FALSE){
if(!is.null(color_by)) p <- ggplot(molten_mean,aes(x=variable,y=value, fill=colvar,group=wrap))+geom_bar(stat="identity", position = position_dodge(width = 0.95))+ scale_fill_manual(values =cols,labels=ordered2)+ guides(fill = guide_legend(title=color_by))
else {
p <- ggplot(molten_mean,aes(x=variable,y=value, fill=predictor2))+geom_bar(stat="identity", position = position_dodge(width = 0.95))+ scale_fill_manual(values =cols,labels=legend_names)+ guides(fill = guide_legend(title=legend_title))
}
if(length(unique(molten_mean$variable))>1) p <- p+ geom_vline(xintercept=seq(1.5, length(unique(molten_mean$variable))-0.5, 1),lwd=0.2, colour="grey")
p <- p+ theme_bw() + theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),legend.key = element_blank(),axis.title=element_text(size=14),legend.text=element_text(size=12), axis.text = element_text(size = 12),strip.text = element_text(size = 12),legend.key.size = unit(0.5, "cm"),text=element_text(size=12)) +xlab(NULL)+ylab(ylabs)+ggtitle(main)+ theme(strip.background = element_blank()) +coord_flip()
}
}
if(!is.null(facet_wrap)) {
if(is.null(facet_label)) label_names <- levels(factor(samp[,facet_wrap]))
if(!is.null(facet_label)) label_names <- facet_label
if(facet_n==TRUE){
label_names <- samp2 %>%
dplyr::group_by(get(facet_wrap)) %>%
dplyr::summarise(n = n()) %>%
dplyr::mutate(pasted_label = paste0(levels(factor(samp2[,facet_wrap])), ", n = ", n))
label_names <- as.character(label_names$pasted_label)
}
names(label_names) <- levels(factor(samp2[,facet_wrap]))
if(stats=="mixed") {
label_names <- c(label_names,"Mixed")
names(label_names) <- c(levels(factor(samp2[,facet_wrap])),"Mixed")
}
p <- p+ facet_grid(~wrap,labeller = labeller(wrap=label_names),scales = "free", space = "free")+ theme(strip.background = element_blank())
if(bar_chart==FALSE) p$layers[4:5] <- NULL
}
if(italic_names==TRUE & (bar_chart==FALSE | (bar_chart==TRUE & bar_chart_stacked==FALSE))) {
if(type=="genus" | type=="family" | type=="species")
if(no_other_type==F)
p <- suppressWarnings(p+ theme(axis.text.y=element_text(face = c("plain", rep("italic",length(unique(molten$variable))-1)))))
else p <- p+ theme(axis.text.y=element_text(face = "italic"))
}
if(!is.null(color_by)) {
# p <- p + facet_grid(~predictor2, scales = "free", space = "free")
if(color_by=="genus" | color_by=="family" | color_by=="species") p <- p+ theme(legend.text=element_text(face = "italic"))
if(color_by==type & bar_chart_stacked==FALSE ) p <- p+theme(legend.position="none")
}
if(p_val==TRUE){
if(log==FALSE){
if(bar_chart==TRUE) pval$y <- max(molten_mean$value)*1.10
else pval$y <- max(molten$value)*1.15
}
else pval$y <-ifelse(log_max==100,10,ifelse(log_max==10,0.126,0.0126))
if(p_adjust==TRUE){
if(log==FALSE & bar_chart==FALSE) pval$y_adjust <- 1.22
if(log==FALSE & bar_chart==TRUE) pval$y_adjust <- max(molten_mean$value)*1.25
if(log==TRUE) pval$y_adjust <- ifelse(log_max==100,105,ifelse(log_max==10,1.26,0.126))
}
}
if(log==TRUE){
if(p_val==FALSE){
if(log_max == 100) p <- p+ scale_y_log10(breaks=c(.000001,.001,.01,.1,1),labels=c("0%","0.1%","1%","10%","100%"))
if(log_max == 10) p <- p+ scale_y_log10(limits=c(0.001,0.13),breaks=c(.001,.01,.05,.1),labels=c("0%","1%","5%","10%"))
if(log_max == 1) p <- p+ scale_y_log10(limits=c(0.001,0.013),breaks=c(.001,.01),labels=c("0%","1%"))
}
if(p_val==TRUE){
if(p_adjust){
if(log_max == 100) p <- p+ scale_y_log10(breaks=c(.000001,.001,.01,.1,1,7,70),labels=c("0%","0.1%","1%","10%","100%", "P-value", "q-value"))
if(log_max == 10) p <- p+ scale_y_log10(breaks=c(.001,.01,.05,0.1,0.126,1.26),labels=c("0%","1%","5%","10%", "P-value", "q-value"))
if(log_max == 1) p <- p+ scale_y_log10(breaks=c(.001,.01,0.0126,0.126),labels=c("0%","1%", "P-value", "q-value"))
}
else{
if(log_max == 100) p <- p+ scale_y_log10(breaks=c(.000001,.001,.01,.1,1,7),labels=c("0%","0.1%","1%","10%","100%", "P-value"))
if(log_max == 10) p <- p+ scale_y_log10(breaks=c(.001,.01,.05,0.10,0.126),labels=c("0%","1%","5%","10%", "P-value"))
if(log_max == 1) p <- p+ scale_y_log10(breaks=c(.001,.01,0.0126),labels=c("0%","1%", "P-value"))
}
}
}
if(log==FALSE){
if(p_val==FALSE) p <- p + scale_y_continuous(breaks=c(0,.25,.50,.75,1),labels=c("0%","25%","50%","75%","100%"))
if(p_val==TRUE){
if(p_adjust==TRUE) {
if(max(molten_mean$value)<=1 & max(molten_mean$value)>=0.75) p <- p + scale_y_continuous(breaks=c(0,.25,.50,.75,1,max(molten_mean$value)*1.07,max(molten_mean$value)*1.25),labels=c("0%","25%","50%","75%","100%", "P-value", "q-value"))
if(max(molten_mean$value)<0.75 & max(molten_mean$value)>=0.50) p <- p + scale_y_continuous(breaks=c(0,.25,.50,max(molten_mean$value)*1.07,max(molten_mean$value)*1.25),labels=c("0%","25%","50%", "P-value", "q-value"))
if(max(molten_mean$value)<0.50 & max(molten_mean$value)>=0.25) p <- p + scale_y_continuous(breaks=c(0,.1,.2,.3,.4,max(molten_mean$value)*1.07,max(molten_mean$value)*1.25),labels=c("0%","10%","20%","30%","40%", "P-value", "q-value"))
if(max(molten_mean$value)<0.25) p <- p + scale_y_continuous(breaks=c(0,.05,.1,.15,.2,max(molten_mean$value)*1.07,max(molten_mean$value)*1.25),labels=c("0%","5%","10%","15%","20%", "P-value", "q-value"))
}
if(p_adjust==FALSE) {
if(max(molten_mean$value)<=1 & max(molten_mean$value)>=0.75) p <- p + scale_y_continuous(breaks=c(0,.25,.50,.75,1,max(molten_mean$value)*1.07),labels=c("0%","25%","50%","75%","100%", "P-value"))
if(max(molten_mean$value)<0.75 & max(molten_mean$value)>=0.50) p <- p + scale_y_continuous(breaks=c(0,.25,.50,max(molten_mean$value)*1.07),labels=c("0%","25%","50%", "P-value"))
if(max(molten_mean$value)<0.50 & max(molten_mean$value)>=0.25) p <- p + scale_y_continuous(breaks=c(0,.1,.2,.3,.4,max(molten_mean$value)*1.07),labels=c("0%","10%","20%","30%","40%", "P-value"))
if(max(molten_mean$value)<0.25) p <- p + scale_y_continuous(breaks=c(0,.05,.1,.15,.2,max(molten_mean$value)*1.07),labels=c("0%","5%","10%","15%","20%", "P-value"))
}
}
}
p <- p + theme(plot.background = element_blank(),panel.background = element_blank(),plot.title = element_text(hjust = 0.5))
p <- p + theme(axis.text.x = element_text(angle = text_angle_x, vjust = ifelse(text_angle_x<0 & text_angle_x>-90 , 0, ifelse(text_angle_x>=0 & text_angle_x<90, 1, 0.5)), hjust=ifelse(text_angle_x==0 | text_angle_x==180 | text_angle_x==-180 | text_angle_x==180, 0.5, ifelse((text_angle_x<0 & text_angle_x>=-90) | text_angle_x>=270, 0, 1))))
if (bar_chart==TRUE & bar_chart_stacked==FALSE & percent==TRUE) p <- p+ geom_text(aes(label = paste0(sprintf("%.2f",value*100), "%")), hjust = -.12, position=position_dodge(width=0.95))+scale_y_continuous(limits=c(0,max(molten_mean$value)+0.2),labels = scales::percent)
if(no_legends) p <- p + theme(legend.position="none")
if(no_names) p <- p + theme(axis.text.y=element_blank(),axis.ticks.y=element_blank())
stars.pval <- function (p.value)
{ unclass(symnum(p.value, corr = FALSE, na = FALSE, cutpoints = c(0, 0.001, 0.01, 0.05, 1), symbols = c("***", "**", "*", "NS")))
}
if(p_stars==TRUE & p_val==TRUE) p <- p + geom_text(data=pval,aes(x=variable,y=y,label=paste(stars.pval(pval))) ,size=3,hjust=1)
if(p_stars==FALSE & p_val==TRUE & (bar_chart==FALSE | (bar_chart==TRUE & bar_chart_stacked==FALSE))){
p <- p + geom_text(data=pval,aes(x=variable,y=y,label=ifelse(pval<0.05, paste(format.pval(pval,1,0.001,nsmall=3)),"")) ,size=3,hjust=1,fontface="bold")
p <- p + geom_text(data=pval,aes(x=variable,y=y,label=ifelse(pval>=0.05, paste(format.pval(pval,1,0.001,nsmall=3)),"")) ,size=3,hjust=1)
if(p_adjust){
p <- p + geom_text(data=pval,aes(x=variable,y=y_adjust,label=ifelse(p_adjust<0.05, paste(format.pval(p_adjust,1,0.001,nsmall=3)),"")) ,size=3,hjust=1,fontface="bold")
p <- p + geom_text(data=pval,aes(x=variable,y=y_adjust,label=ifelse(p_adjust>=0.05, paste(format.pval(p_adjust,1,0.001,nsmall=3)),"")) ,size=3,hjust=1)
}
if(stats=="mixed" & !is.null(facet_wrap)){
if(bar_chart==FALSE) p <- p + expand_limits(y = 2)
if(bar_chart==TRUE) p <- p + expand_limits(y = max(molten_mean2$value))
}
}
p
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.