R/multigroup.R

Defines functions checkmultigroup multigroup

Documented in checkmultigroup multigroup

###{{{ multigroup

##' @export
multigroup <- function(models, datasets, fix, exo.fix=TRUE, keep=NULL, missing=FALSE, ...) {
    nm <- length(models)
    if (nm!=length(datasets)) stop("Supply dataset for each model")
    if (nm<2) stop("Two or more groups neeeded")
    mynames <- names(models)

    ## Check for random slopes
    xfix <- list()
    for (i in seq_len(nm)) {
        x0 <- models[[i]]
        data0 <- datasets[[i]]
        xfix0 <- colnames(data0)[(colnames(data0)%in%parlabels(x0,exo=TRUE))]
        xfix <- c(xfix, list(xfix0))
    }
    if (missing(fix)) {
        fix <- !any(unlist(lapply(xfix, function(x) length(x)>0)))
    }

    for (i in seq_len(nm)) {
        x0 <- models[[i]]
        data0 <- datasets[[i]]
        if (length(exogenous(x0)>0)) {
            catx <- categorical2dummy(x0,data0)
            models[[i]] <- catx$x; datasets[[i]] <- catx$data
        }
        if (!lava.options()$exogenous) exogenous(models[[i]]) <- NULL
    }

    models.orig <- NULL
    ######################
    ### MLE with MAR mechanism
    ######################
    if (missing) {

        reservedpars <- c()
        mynpar <- c()
        for (i in seq_len(nm)) {
            ## Fix some parameters (predictors,latent variables,...)

            d0 <- datasets[[i]][1,,drop=FALSE]; d0[,] <- 1
            if (fix)
                models[[i]] <- fixsome(models[[i]], exo.fix=exo.fix, measurement.fix=fix, data=d0)
            ## Find named/labelled parameters
            rpar <- unique(parlabels(models[[i]]))
            reservedpars <- c(reservedpars, rpar)
            mynpar <- c(mynpar, with(index(models[[1]]), npar+npar.mean+npar.ex))
        }; reservedpars <- unique(reservedpars)
        nonamepar <- sum(mynpar)
        ## Find unique parameter-names for all parameters
        newpars <- c()
        i <- 0
        pos <- 1
        while(pos<=nonamepar) {
            i <- i+1
            newname <- paste0("par",i)
            if (!(newname%in%reservedpars)) {
                newpars <- c(newpars,newname)
                pos <- pos+1
            }
        }

        pos <- 0
        models0 <- list()
        datasets0 <- list()
        complidx <- c()
        nmodels <- 0
        modelclass <- c()
        nmis <- c()
        for (i in seq_len(nm)) {
            myvars <- unlist(intersect(colnames(datasets[[i]]),c(vars(models[[i]]),xfix[[i]],keep)))
            mydata <- datasets[[i]][,myvars]
            if (any(is.na(mydata))) {
                if (i>1) pos <- pos+mynpar[i-1]
                models[[i]] <- baptize(models[[i]],newpars[pos+seq_len(mynpar[i])] ,overwrite=FALSE)
                val <- missingModel(models[[i]],mydata,fix=FALSE,keep=keep,...)
                nmodels <- c(nmodels,length(val$models))
                complidx <- c(complidx,val$pattern.allcomp+nmodels[i]+1)
                nmis0 <- rowSums(val$patterns);
                allmis <- which(nmis0==ncol(val$patterns))
                if (length(allmis)>0) nmis0 <- nmis0[-allmis]
                nmis <- c(nmis,nmis0)
                datasets0 <- c(datasets0, val$datasets)
                models0 <- c(models0, val$models)
                modelclass <- c(modelclass,rep(i,length(val$models)))
            } else {
                datasets0 <- c(datasets0, list(mydata))
                models0 <- c(models0, list(models[[i]]))
                modelclass <- c(modelclass,i)
                nmis <- c(nmis,0)
            }
        }

        models.orig <- models

        suppressWarnings(
            val <- multigroup(models0,datasets0,fix=FALSE,missing=FALSE,exo.fix=TRUE,...)
        )
        val$models.orig <- models.orig; val$missing <- TRUE
        val$complete <- complidx-1
        val$mnames <- mynames
        attributes(val)$modelclass <- modelclass
        attributes(val)$nmis <- nmis
        return(val)
    }


    ######################
    ### Usual analysis:
    ######################
    warned <- FALSE
    for (i in seq_len(nm)) {
        if (inherits(datasets[[i]],c("data.frame","matrix"))) {
            myvars <- intersect(colnames(datasets[[i]]),c(vars(models[[i]]),xfix[[i]],keep))
            if (any(is.na(datasets[[i]][,myvars]))) {
                if (!warned)
                    warning(paste0("Missing data encountered. Going for complete-case analysis"))
                warned  <- TRUE
                datasets[[i]] <- na.omit(datasets[[i]][,myvars,drop=FALSE])
            }
        }
    }

    exo <- exogenous(models)
    means <- lvms <- As <- Ps <- ps <- exs <- datas <- samplestat <- list()
    for (i in seq_len(nm)) {

        if (!is.null(exogenous(models[[i]]))) {
            if (any(is.na(exogenous(models[[i]])))) {
                exogenous(models[[i]]) <- exo
            }
        }

        mydata <- datasets[[i]]
        mymodel <- fixsome(models[[i]], data=mydata, measurement.fix=fix, exo.fix=exo.fix)
        mymodel <- updatelvm(mymodel,zeroones=TRUE,deriv=TRUE)

        P <- index(mymodel)$P1; P[P==0] <- NA
        P[!is.na(P) & !is.na(mymodel$covpar)] <- mymodel$covpar[!is.na(P) & !is.na(mymodel$covpar)]

        A <- index(mymodel)$M1; A[A==0] <- NA
        A[!is.na(A) & !is.na(mymodel$par)] <- mymodel$par[!is.na(A) & !is.na(mymodel$par)]

        mu <- unlist(mymodel$mean)[which(index(mymodel)$v1==1)]
        #ex <- names(mymodel$expar)[which(index(mymodel)$e1==1)]
        ex <- mymodel$exfix
        if (length(ex)>0) {
            if (any(is.na(ex))) ex[is.na(ex)] <- mymodel$expar[is.na(ex)]
            ex <- ex[which(index(mymodel)$e1==1)]
        }

        p <- pars(mymodel, A, P, e=ex)
        p[p=="1"] <- NA

        means <- c(means, list(mu))
        lvms <- c(lvms, list(mymodel))
        datas <- c(datas, list(mydata))
        samplestat <- c(samplestat, list(procdata.lvm(models[[i]],data=mydata)))
        As <- c(As, list(A))
        Ps <- c(Ps, list(P))
        ps <- c(ps, list(p))
        exs <- c(exs, list(ex))
    };

    ######
    pp <- unlist(ps)
    parname <- unique(pp[!is.na(pp)])
    pidx <- is.na(char2num(parname))
    parname <- unique(unlist(pp[!is.na(pp)]));
    nfree <- sum(is.na(pp)) + length(parname)

    if (nfree>0) {
        pp0 <- lapply(ps, is.na)
        usedname <- cbind(parname, rep(NA,length(parname)))
        counter <- 1
        pres <- pres0 <- pp0
        for (i in seq_len(length(pp0))) {
            if (length(pp0[[i]]>0))
                for (j in seq_len(length(pp0[[i]]))) {
                    pidx <- match(ps[[i]][j],parname)
                    if (pp0[[i]][j]) {
                        pres[[i]][j] <- paste0("p",counter)
                        pres0[[i]][j] <- counter
                        counter <- counter+1
                    } else if (!is.na(pidx)) {
                        if (!is.na(usedname[pidx,2])) {
                            pres[[i]][j] <- usedname[pidx,2]
                            pres0[[i]][j] <- char2num(substr(pres[[i]][j],2,nchar(pres[[i]][j])))
                        } else {
                            val <- paste0("p",counter)
                            pres[[i]][j] <- val
                            pres0[[i]][j] <- counter
                            usedname[pidx,2] <- val
                            counter <- counter+1
                        }
                    } else {
                        pres[[i]][j] <- NA
                    }
                }
        }
        mypar <- paste0("p",seq_len(nfree))
        myparPos <- pres0
        myparpos <- pres
        myparlist <- lapply(pres, function(x) x[!is.na(x)])
    } else {
        myparPos <- NULL
        mypar <- NULL
        myparpos <- NULL
        myparlist <- NULL
    }

    ### Mean parameter

    mm <- unlist(means)
    meanparname <- unique(mm[!is.na(mm)])
    midx <- is.na(char2num(meanparname));
    meanparname <- meanparname[midx]
    any.mean <- sum(is.na(mm)) + length(meanparname)
    nfree.mean <- sum(is.na(mm)) + length(setdiff(meanparname,parname))
    ## mean.fixed <- na.omit(match(parname,mm))
    mean.omit <- lapply(means,function(x) na.omit(match(parname,x)))

    if (any.mean>0) {
        mm0 <- lapply(means, is.na)
        usedname <- cbind(meanparname, rep(NA,length(meanparname)))
        counter <- 1
        res0 <- res <- mm0
        for (i in seq_len(length(mm0))) {
            if (length(mm0[[i]])>0)
                for (j in seq_len(length(mm0[[i]]))) {
                    midx <- match(means[[i]][j],meanparname)
                    if (mm0[[i]][j]) {
                        res[[i]][j] <- paste0("m",counter)
                        res0[[i]][j] <- counter
                        counter <- counter+1
                    } else if (!is.na(midx)) {
                        pidx <- match(meanparname[midx],pp)
                        if (!is.na(pidx)) {
                            res[[i]][j] <- unlist(myparlist)[pidx]
                            res0[[i]][j] <- char2num(substr(res[[i]][j],2,nchar(res[[i]][j]))) +
                                nfree.mean
                        } else {
                            if (!is.na(usedname[midx,2])) {
                                res[[i]][j] <- usedname[midx,2]
                                res0[[i]][j] <- char2num(substr(res[[i]][j],2,nchar(res[[i]][j])))
                            } else {
                                val <- paste0("m",counter)
                                res[[i]][j] <- val
                                res0[[i]][j] <- counter
                                usedname[midx,2] <- val
                                counter <- counter+1
                            }
                        }
                    } else {
                        res[[i]][j] <- NA
                    }
                }
        }
        mymeanPos <- res0
        mymeanpos <- res
        mymeanlist <- lapply(res, function(x) x[!is.na(x)])
        mymean <- unique(unlist(mymeanlist))
    } else {
        mymeanPos <- NULL
        mymean <- NULL
        mymeanpos <- NULL
        mymeanlist <- NULL
    }

    ### Extra parameters

    m0 <- p0 <- c()
    coefs <- coefsm <- mm0 <- mm <- pp0 <- pp <- c()
    for (i in seq_len(length(myparPos))) {
        mi <- mymeanPos[[i]]
        pi <- myparPos[[i]]
        p1 <- setdiff(pi,p0)
        p0 <- c(p0,p1)
        ##    pp0 <- c(pp0,list(match(p1,pi)+nfree.mean))
        pp0 <- c(pp0,list(match(p1,pi)))
        if (length(mean.omit[[i]])>0) mi <- mi[-mean.omit[[i]]]
        m1 <- setdiff(mi,m0)
        m0 <- c(m0,m1)
        mm0 <- c(mm0,list(match(m1,mi)))
        pp <- c(pp,list(c(m1,p1+nfree.mean)))
        if (length(p1)>0)
            coefs <- c(coefs,paste(coef(lvms[[i]],fix=FALSE,mean=FALSE)[pp0[[i]]],i,sep="@"))
            #coefs <- c(coefs,paste(i,coef(lvms[[i]],fix=FALSE,mean=FALSE)[pp0[[i]]],sep="@"))
        if (length(m1)>0) {
            coefsm0 <- paste(coef(lvms[[i]],fix=FALSE,mean=TRUE)[mm0[[i]]],i,sep="@")
            #coefsm0 <- paste(i,coef(lvms[[i]],fix=FALSE,mean=TRUE)[mm0[[i]]],sep="@")
            coefsm <- c(coefsm,coefsm0)
        }
    }
    coefs <- c(coefsm,coefs)

    res <- list(npar=nfree, npar.mean=nfree.mean,
                ngroup=length(lvms), names=mynames,
                lvm=lvms, data=datas, samplestat=samplestat,
                A=As, P=Ps, expar=exs,
                meanpar=names(mu), name=coefs, coef=pp, coef.idx=pp0,
                par=mypar, parlist=myparlist,  parpos=myparpos,
                mean=mymean, meanlist=mymeanlist, meanpos=mymeanpos,
                parposN=myparPos,
                meanposN=mymeanPos,
                models.orig=models.orig, missing=missing
                )
    class(res) <- "multigroup"
    checkmultigroup(res)
    return(res)
}

###}}}

###{{{ checkmultigroup

checkmultigroup <- function(x) {
    ## Check validity:
    for (i in seq_len(x$ngroup)) {
        if (nrow(x$data[[i]])<2) {
            warning("With only one observation in the group, all parameters should be inherited from another a group!")
        }
    }
}

###}}} checkmultigroup
kkholst/lava documentation built on Sept. 6, 2021, 11:36 p.m.