Description Usage Arguments Author(s) References See Also Examples
This function calculates distIUPAC based distances
comparing two populations (x: receiver and y: donor) with an ingroup
population (i: ingroup) and an outgroup population (o: outgroup).
In the four-taxon scenario (((P1,P2),P3),O) with geneflow from P3>>P2,
the populations should be defined for deltaMean and deltaMin statistics as
follows [x:P2 y:P3 i:P1 o:P4].
Accordingly in the four-taxon scenario (((P1,P2),P3),O) with geneflow from
P2>>P3, the populations should be defined for RND, Gmin and RNDmin
statistics as follows [x:P3 y:P2 i:P1 o:P4]. Optional, ABBA-BABA statisctis
can be calculated concordantly on the four-taxon scenario
(((P1:i,P2:x),P3:y),O:o).
| 1 2 3 4 5 6 | xyioStats(dna, x.pos, y.pos, i.pos, o.pos, x.name = "x", y.name = "y",
  i.name = "i", o.name = "o", chr.name = "chr", wlen = 25000,
  wjump = 25000, start.by = 1, end.by = NULL, wtype = "bp",
  dist = "IUPAC", global.deletion = TRUE, threads = 1, ncores = 1,
  pB = FALSE, do.ABBA = FALSE, x.freq = 1, y.freq = 1,
  i.freq = 1, o.freq = 1)
 | 
| dna | 
 | 
| x.pos | population X positions [P2 population in the four-taxon scenario (((P1,P2),P3),O) with geneflow from P3>>P2] [mandatory] | 
| y.pos | population Y positions [P3 population in the four-taxon scenario (((P1,P2),P3),O) with geneflow from P3>>P2] [mandatory] | 
| i.pos | population I positions [P1 population in the four-taxon scenario (((P1,P2),P3),O) with geneflow from P3>>P2] [mandatory] | 
| o.pos | population I positions [P4 population in the four-taxon scenario (((P1,P2),P3),O) with geneflow from P3>>P2] [mandatory] | 
| x.name | population X name [default: "x"] | 
| y.name | population Y name [default: "y"] | 
| i.name | population I name [default: "i"] | 
| o.name | population O name [default: "o"] | 
| chr.name | chromosome name [default: "chr"] | 
| wlen | sliding windows length [default: 25000] | 
| wjump | sliding windows jump [default: 25000] | 
| start.by | optional start position [default: 1] | 
| end.by | optional end position [default: NULL] | 
| wtype | sliding windows type to use  | 
| dist | distance to use, choose one model as in dist.dna or [default: "IUPAC"] | 
| global.deletion | a logical indicating whether to delete the sites with missing data in a global or pairwise way (default is to delete in a global way) [default: TRUE] | 
| threads | number of parallel threads [default: 1] | 
| ncores | number of parallel cores to process pairwise distance calculation [default: 1] | 
| pB | specifies if progress should be shown as a progress bar [default: FALSE] | 
| do.ABBA | specifies if ABBA-BABA statistics should be calculated [default: FALSE] | 
| x.freq | [default: 1.0] | 
| y.freq | [default: 1.0] | 
| i.freq | [default: 1.0] | 
| o.freq | [default: 1.0] | 
Kristian K Ullrich
Slatkin, M. (1991). Inbreeding coefficients and coalescence times. Genetics Research, 58(2), 167-175.
Beerli, P. (1998). Structured Populations. Advances in molecular ecology, 306, 39.
Reich, D., Thangaraj, K., Patterson, N., Price, A. L., & Singh, L. (2009). Reconstructing Indian population history. Nature, 461(7263), 489.
Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., ... & Reich, D. (2012). Ancient admixture in human history. Genetics, 192(3), 1065-1093.
Martin, S. H., Davey, J. W., & Jiggins, C. D. (2014). Evaluating the use of ABBA–BABA statistics to locate introgressed loci. Molecular biology and evolution, 32(1), 244-257.
Peter, B. M. (2016). Admixture, population structure, and F-statistics. Genetics, 202(4), 1485-1501.
Rosenzweig, B. K., Pease, J. B., Besansky, N. J., & Hahn, M. W. (2016). Powerful methods for detecting introgressed regions from population genomic data. Molecular ecology, 25(11), 2387-2397.
Paradis, E., & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528.
Hahn, M. W., Hibbins, M. S. (2019). A Three-Sample Test for Introgression. Molecular biology and evolution, msz178.
| 1 2 3 4 5 6 7 8 9 10 | data("MySequences", package="distIUPAC")
CAS.pos<-5:34
AFG.pos<-82:87
SPRE.pos<-106:113
APO.pos<-1
AFG.SPRE.CAS.APO.xyioStats<-xyioStats(MySequences, x.pos=AFG.pos,
y.pos=SPRE.pos, i.pos=CAS.pos, o.pos=APO.pos,
x.name="AFG", y.name="SPRE", i.name="CAS", o.name="APO",
threads=2)
AFG.SPRE.CAS.APO.xyioStats
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.