#### Spatial Gaussian mixture model ####
## --------------------------------------
sgmix <- function(x, y, vals, r = 1, k = 2, group = NULL,
weights = c("gaussian", "bilateral", "adaptive"),
metric = "maximum", p = 2, neighbors = NULL,
annealing = TRUE, niter = 10L, tol = 1e-3,
compress = FALSE, byrow = FALSE,
verbose = NA, chunkopts = list(),
BPPARAM = bpparam(), ...)
{
if ( is.na(verbose) )
verbose <- getOption("matter.default.verbose")
if ( is.array(x) && missing(y) && missing(vals) ) {
if ( !is.matrix(x) && length(dim(x)) != 3L )
matter_error("x must be 2D matrix or 3D array")
co <- as.matrix(expand.grid(
x=seq_len(nrow(x)),
y=seq_len(ncol(x))))
dm <- c(nrow(x), ncol(x))
if ( is.matrix(x) ) {
vals <- list(x)
} else {
vals <- array2list(x, 3L)
}
} else {
co <- cbind(x, y)
dm <- NULL
}
if ( is.list(vals) ) {
n <- length(vals)
} else if ( length(dim(vals)) == 2L ) {
n <- if (byrow) nrow(vals) else ncol(vals)
} else {
matter_error("'vals' must be a list or matrix-like")
}
if ( n > 1 ) {
matter_log("fitting spatial segmentations for ", n, " images", verbose=verbose)
margin <- if (byrow) 1L else 2L
if ( is.list(vals) ) {
ans <- chunkLapply(vals, sgmix_int,
coord=co, r=r, k=k, group=group,
weights=weights, neighbors=neighbors,
annealing=annealing, niter=niter, tol=tol,
compress=compress, verbose=verbose, RNG=TRUE,
chunkopts=chunkopts, BPPARAM=BPPARAM)
} else {
ans <- chunkApply(vals, margin, sgmix_int,
coord=co, r=r, k=k, group=group,
weights=weights, neighbors=neighbors,
annealing=annealing, niter=niter, tol=tol,
compress=compress, verbose=verbose, RNG=TRUE,
chunkopts=chunkopts, BPPARAM=BPPARAM)
}
} else {
if ( is.list(vals) )
vals <- vals[[1L]]
ans <- sgmix_int(vals,
coord=co, r=r, k=k, group=group,
weights=weights, neighbors=neighbors,
annealing=annealing, niter=niter, tol=tol,
compress=compress, verbose=verbose)
ans <- list(ans)
}
group <- ans[[1L]]$group
loglik <- simplify2array(lapply(ans, `[[`, "logLik"))
kout <- vapply(ans, function(a) nlevels(droplevels(a$class)), integer(1L))
if ( any(kout < k) )
matter_warn("fewer than k classes for images ",
paste0(which(kout != k), collapse=", "))
pv <- simplify2array(lapply(ans, `[[`, "probability"))
ans <- list(
class=lapply(ans, `[[`, "class"),
probability=structure(pv,
group=attr(ans[[1L]]$probability, "group")),
mu=simplify2array(lapply(ans, `[[`, "mu")),
sigma=simplify2array(lapply(ans, `[[`, "sigma")),
alpha=simplify2array(lapply(ans, `[[`, "alpha")),
beta=simplify2array(lapply(ans, `[[`, "beta")))
if ( !is.null(dm) ) {
ans$class <- lapply(ans$class,
function(class) {
if ( !is.drle(class) ) {
class <- as.integer(class)
dim(class) <- dm
}
class
})
}
if ( is.list(pv) && is.null(pv[[1L]]) )
ans$probability <- NULL
ans$group <- group
ans$logLik <- loglik
class(ans) <- c("sgmixn", "sgmix")
ans
}
sgmixn <- function(x, y, vals, ...)
{
.Deprecated("sgmix")
sgmix(x=x, y=y, vals=vals, ...)
}
sgmix_int <- function(x, coord, r = 1, k = 2, group = NULL,
weights = c("gaussian", "bilateral", "adaptive"),
metric = "maximum", p = 2, neighbors = NULL,
annealing = TRUE, niter = 10L, tol = 1e-3,
compress = FALSE, verbose = NA, ...)
{
if ( is.na(verbose) )
verbose <- getOption("matter.default.verbose")
if ( is.matrix(x) && missing(coord) ) {
co <- as.matrix(expand.grid(
x=seq_len(nrow(x)),
y=seq_len(ncol(x))))
dm <- c(nrow(x), ncol(x))
} else {
if ( missing(coord) ) {
co <- NULL
if ( !is.list(weights) && !is.list(neighbors) )
matter_error("both 'weights' and 'neighbors' must be ",
"specified when x/y coordinates are not")
} else {
co <- coord
}
dm <- NULL
}
x <- as.vector(x)
xmin <- min(x, na.rm=TRUE)
xmax <- max(x, na.rm=TRUE)
# find neighboring pixels
if ( is.null(neighbors) ) {
nb <- kdsearch(co, co, tol=r)
ds <- rowdist_at(co, ix=seq_len(nrow(co)), iy=nb, metric=metric, p=p)
nb <- lapply(seq_along(x),
function(i) {
d_ok <- ds[[i]] <= r
if ( is.null(group) ) {
g_ok <- rep.int(TRUE, length(d_ok))
} else {
g_ok <- group[nb[[i]]] %in% group[i]
}
nb[[i]][d_ok & g_ok]
})
} else {
nb <- rep_len(neighbors, length(x))
}
# find neighboring pixel weights
if ( is.character(weights) ) {
weights <- match.arg(weights)
d2 <- rowdist_at(co, ix=seq_len(nrow(co)), iy=nb, metric="euclidean")
a <- ((2 * r) + 1) / 4
wts <- lapply(d2, function(d) exp(-d^2 / (2 * a^2)))
if ( weights %in% c("bilateral", "adaptive") ) {
d3 <- Map(function(xi, i) abs(xi - x[i]), x, nb)
if ( weights == "bilateral" ) {
bs <- rep_len(mad(x, na.rm=TRUE), length(x))
} else {
bs <- vapply(d3, function(d) (max(d) / 2)^2, numeric(1L))
}
awts <- Map(function(d, b) exp(-d^2 / (2 * b^2)), d3, bs)
awts <- lapply(awts, function(w) replace(w, is.na(w), 1))
wts <- Map("*", wts, awts)
}
} else {
wts <- rep_len(weights, length(x))
}
wts <- lapply(wts, function(w) w / sum(w, na.rm=TRUE))
# grouped segmentation
if ( !is.null(group) )
{
# fit model for each group
group <- as.factor(group)
gs <- levels(group)
ans <- lapply(gs, function(g)
{
matter_log("fitting model for group ", g, verbose=verbose)
i <- which(group %in% g)
nbi <- lapply(nb[i], bsearch, table=i)
if ( is.character(weights) ) {
sgmix_int(x[i], coord=co[i,,drop=FALSE], r=r, k=k,
group=NULL, weights=weights, neighbors=nbi,
annealing=annealing, niter=niter, tol=tol,
compress=FALSE, verbose=verbose, ...)
} else {
sgmix_int(x[i], coord=co[i,,drop=FALSE], r=r, k=k,
group=NULL, weights=wts[i], neighbors=nbi,
annealing=annealing, niter=niter, tol=tol,
compress=FALSE, verbose=verbose, ...)
}
})
# combine and return models
mu <- do.call(rbind, lapply(ans, `[[`, "mu"))
sigma <- do.call(rbind, lapply(ans, `[[`, "sigma"))
alpha <- do.call(rbind, lapply(ans, `[[`, "alpha"))
beta <- unlist(lapply(ans, `[[`, "beta"))
dimnames(mu) <- list(gs, seq_len(k))
dimnames(sigma) <- dimnames(mu)
dimnames(alpha) <- dimnames(mu)
names(beta) <- gs
y <- matrix(0, nrow=length(x), ncol=length(mu))
for ( i in seq_along(gs) ) {
ir <- which(group %in% gs[i])
ic <- seq_len(k) + (i - 1L) * k
y[ir,ic] <- ans[[i]]$probability
}
colnames(y) <- rep.int(seq_len(k), length(gs))
attr(y, "group") <- rep(gs, each=k)
class <- predict_class(y)
if ( compress ) {
class <- drle(class)
y <- NULL
}
if ( !is.null(dm) && !is.drle(class) ) {
class <- as.integer(class)
dim(class) <- dm
}
loglik <- sum(unlist(lapply(ans, `[[`, "logLik")))
ans <- list(class=class, probability=y,
mu=mu, sigma=sigma, alpha=alpha, beta=beta)
ans$group <- group
ans$logLik <- loglik
class(ans) <- "sgmix"
return(ans)
}
# check for degeneracy
xu <- sort(unique(x), decreasing=TRUE)
if ( length(xu) <= k )
{
if ( length(xu) < k )
matter_warn("k > number of distinct data points")
class <- factor(x, levels=xu, labels=seq_along(xu))
y <- encode_dummy(class)
mu <- set_names(c(xu, rep.int(NA_real_, k - length(xu))), seq_len(k))
sigma <- set_names(rep.int(0, k), seq_len(k))
alpha <- set_names(rep.int(1, k), seq_len(k))
ans <- list(class=class, probability=y, mu=t(mu), sigma=t(sigma),
alpha=t(alpha), beta=1, logLik=NA_real_)
class(ans) <- "sgmix"
return(ans)
}
# initialize parameters (mu, sigma, alpha, beta)
matter_log("initializing model using k-means", verbose=verbose)
init <- kmeans(x, centers=k, ...)
mu <- as.vector(init$centers)
sigma <- as.vector(tapply(x, init$cluster, sd))
sigma <- ifelse(is.finite(sigma), sigma, 0.15 * mu)
alpha <- rep.int(1, k)
beta <- 1
# initialize p(x|mu,sigma)
px <- matrix(0, nrow=length(x), ncol=k)
for ( i in seq_len(k) )
px[,i] <- (1 / sigma[i]) * exp(-(x - mu[i])^2 / (2 * sigma[i]^2))
y <- px / rowSums(px)
class <- predict_class(y)
# expectation step
stepE <- function(y, mu, sigma, alpha, beta, ...)
{
# compute posterior probability p(z|neighbors)
ybar <- apply(y, 2L, convolve_at,
index=nb, weights=wts, na.rm=TRUE)
# update p(x|mu,sigma)
px <- matrix(0, nrow=length(x), ncol=k)
for ( i in seq_len(k) )
px[,i] <- (1 / sigma[i]) * exp(-(x - mu[i])^2 / (2 * sigma[i]^2))
px <- px / rowSums(px, na.rm=TRUE)
# update prior probability
priors <- t(alpha * t(ybar)^beta)
priors <- priors / rowSums(priors, na.rm=TRUE)
# update posterior probability p(z)
y <- px * priors
# compute log-likelihood
loglik <- sum(log1p(rowSums(pmax(y, 0))), na.rm=TRUE)
y <- y / rowSums(y, na.rm=TRUE)
list(y=y, ybar=ybar, loglik=loglik)
}
# maximization step
stepM <- function(eta, y, ybar, mu, sigma, alpha, beta, ...)
{
# initialize gradient
gr <- list(
mu=rep.int(1, k),
sigma=rep.int(1, k),
alpha=rep.int(1, k),
beta=1)
# compute gradient
gr$mu <- rowSums(t(y) * (mu - rep(x, each=k)) / sigma^2, na.rm=TRUE)
c1 <- 1 / sigma
c2 <- (mu - rep(x, each=k))^2 / sigma^3
gr$sigma <- rowSums(t(y) * (c1 - c2), na.rm=TRUE)
c1 <- -rowSums(2 * t(y) / alpha, na.rm=TRUE)
c2 <- colSums(y * ybar^beta, na.rm=TRUE)
c3 <- rowSums(alpha^2 * t(ybar^beta), na.rm=TRUE)
gr$alpha <- c1 + 2 * alpha * sum(c2 / c3)
c1 <- alpha^2 * t(ybar^beta)
c2 <- c1 * t(log1p(ybar))
c3 <- colSums(c2, na.rm=TRUE) / colSums(c1, na.rm=TRUE)
gr$beta <- sum(y * (-log1p(ybar) + c3), na.rm=TRUE)
# find step size limits
limits <- range(c(0, abs(sigma / gr$sigma),
abs(alpha / gr$alpha), abs(beta / gr$beta)), na.rm=TRUE)
# update parameters
list(
mu=mu - eta * gr$mu,
sigma=sigma - eta * gr$sigma,
alpha=alpha - eta * gr$alpha,
beta=beta - eta * gr$beta,
limits=limits)
}
# iterate
tt <- 1
matter_log("estimating parameters with gradient descent", verbose=verbose)
for ( iter in seq_len(niter) )
{
# update probability from expectation step
E <- stepE(y, mu=mu, sigma=sigma, alpha=alpha, beta=beta)
ybar <- E$ybar
y <- E$y
loglik <- E$loglik
if ( all(class == predict_class(y)) ) {
matter_log("no more class assignment changes", verbose=verbose)
break
}
class <- predict_class(y)
# set up objective function
fn <- function(eta, ...) {
m <- stepM(eta, ...)
e <- stepE(y, mu=m$mu, sigma=m$sigma, alpha=m$alpha, beta=m$beta)
if ( is.finite(e$loglik) ) {
-e$loglik
} else {
.Machine$double.xmax
}
}
# find optimal gradient descent step size
eta <- stepM(0, y=y, ybar=ybar,
mu=mu, sigma=sigma, alpha=alpha, beta=beta)
G <- optimize(fn, eta$limits, y=y, ybar=ybar,
mu=mu, sigma=sigma, alpha=alpha, beta=beta)
matter_log("log Lik = ", format.default(-G$objective), " on iteration ", iter,
" (step size = ", format.default(G$minimum), ")", verbose=verbose)
if ( annealing || loglik > -G$objective )
{
# simulate annealing
i <- sample(k)
sa_mu <- mu
sa_mu[i] <- rnorm(1L, mean=mu[i], sd=tt * sigma[i])
S <- stepE(y, mu=sa_mu, sigma=sigma, alpha=alpha, beta=beta)
tt <- tt - (1 / niter)
if ( S$loglik > -G$objective && S$loglik > loglik )
{
matter_log("log Lik = ",
format.default(S$loglik), " on iteration ", iter,
" (simulated annealing)", verbose=verbose)
mu <- sa_mu
next
}
if ( loglik > -G$objective ) {
matter_log("log Lik decreased; reverting to previous model",
verbose=verbose)
break
}
}
# update parameters from maximization step
M <- stepM(G$minimum, y=y, ybar=ybar,
mu=mu, sigma=sigma, alpha=alpha, beta=beta)
if ( any(c(M$sigma, M$alpha, M$beta) <= 0) ||
any(M$mu < xmin) || any(M$mu > xmax) )
{
matter_log("constraining parameters; reverting to previous model",
verbose=verbose)
break
}
mu <- M$mu
sigma <- M$sigma
alpha <- M$alpha
beta <- M$beta
if ( abs(-loglik - G$objective) < tol )
break
}
# re-order based on segment means
ord <- order(mu, decreasing=TRUE)
y <- y[,ord,drop=FALSE]
mu <- set_names(mu[ord], seq_len(k))
sigma <- set_names(sigma[ord], seq_len(k))
alpha <- set_names(alpha[ord], seq_len(k))
# estimate final parameters and probabilities
E <- stepE(y, mu=mu, sigma=sigma, alpha=alpha, beta=beta)
y <- E$y
colnames(y) <- seq_len(k)
class <- predict_class(y)
if ( compress ) {
class <- drle(class)
y <- NULL
}
if ( !is.null(dm) && !is.drle(class) ) {
class <- as.integer(class)
dim(class) <- dm
}
ans <- list(class=class, probability=y,
mu=t(mu), sigma=t(sigma), alpha=t(alpha), beta=beta)
ans$logLik <- loglik
class(ans) <- "sgmix"
ans
}
print.sgmix <- function(x, ...)
{
cat(sprintf("Spatial Gaussian mixture model (k=%d, channels=%d)\n",
ncol(x$mu), length(x$class)))
if ( !is.null(x$group) )
cat("\nGroups:", levels(x$group), "\n")
cat("\nParameter estimates:\n")
cat("$mu\n")
preview_Nd_array(x$mu, ...)
cat("\n$sigma\n")
preview_Nd_array(x$sigma, ...)
invisible(x)
}
fitted.sgmix <- function(object,
type = c("mu", "sigma", "class"), channel = NULL, ...)
{
type <- match.arg(type)
if ( is.null(channel) ) {
if ( type == "mu" ) {
object$mu
} else if ( type == "sigma" ) {
object$sigma
} else {
object$class
}
} else {
if ( type == "mu" ) {
object$mu[,,channel]
} else if ( type == "sigma" ) {
object$sigma[,,channel]
} else {
object$class[[channel]]
}
}
}
logLik.sgmix <- function(object, ...)
{
nobs <- lengths(object$class)
p <- 3L * prod(dim(object$mu)[1:2]) + 1L
structure(object$logLik, df=nobs - p, nobs=nobs,
class="logLik")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.