R/sparse_arr.R

Defines functions set_sparse_mat_submatrix get_sparse_mat_submatrix subset_sparse_mat_submatrix set_sparse_arr_elts get_sparse_arr_elts subset_sparse_arr_elts convert_sparse_arr_LIL convert_sparse_arr_CSX is_sparse_arr_LIL is_sparse_arr_CSX is.sparse as.sparse sparse_mat sparse_vec

Documented in as.sparse is.sparse sparse_mat sparse_vec

#### Define sparse VIRTUAL class ####
## ----------------------------------

setClassUnion("matter_OR_list", c("matter_list", "list"))
setClassUnion("matter_OR_array", c("matter_arr", "numeric", "array"))
setClassUnion("matter_OR_array_OR_list", c("matter_OR_array", "matter_OR_list"))

setClass("sparse_arr",
	slots = c(
		data = "matter_OR_array_OR_list",
		index = "matter_OR_array_OR_list",
		pointers = "numeric_OR_NULL",
		domain = "numeric_OR_NULL",
		offset = "integer",
		tolerance = "numeric",
		sampler = "factor",
		ops = "ops_OR_NULL",
		transpose = "logical"),
	contains = "matter",
	validity = function(object) {
		errors <- NULL
		if ( is.null(object@dim) )
			errors <- c(errors, "array must have non-NULL 'dim'")
		if ( length(object@dim) > 2L )
			errors <- c(errors, "sparse arrays are limited to 2 dimensions or fewer")
		if ( length(object@type) != 1L )
			errors <- c(errors, "'type' must be a scalar (length 1)")
		if ( length(object@transpose) != 1L )
			errors <- c(errors, "'transpose' must be a scalar (length 1)")
		if ( !is.null(object@domain) && anyNA(object@domain) )
			errors <- c(errors, "'domain' can't have missing values")
		if ( length(object@offset) != 1L )
			errors <- c(errors, "'offset' must be scalar (length 1)")
		if ( is(object@data, "matter_OR_list") && !is(object@index, "matter_OR_list") )
			errors <- c(errors, "'data' and 'index' are non-conformable classes")
		if ( is(object@data, "matter_OR_array") && !is(object@index, "matter_OR_array") )
			errors <- c(errors, "'data' and 'index' are non-conformable classes")
		if ( length(object@dim) == 1L ) {
			ddim <- 1L
			sdim <- object@dim
		} else if ( object@transpose ) {
			ddim <- object@dim[1L]
			sdim <- prod(object@dim[-1L])
		} else {
			ddim <- object@dim[length(object@dim)]
			sdim <- prod(object@dim[-length(object@dim)])
		}
		if ( is.null(object@pointers) ) {
			# data and index should both be lists
			if ( !is(object@data, "matter_OR_list") || !is(object@index, "matter_OR_list") )
				errors <- c(errors, "'data' and 'index' must both be list-like when pointers are NULL")
			if ( length(object@data) != length(object@index) )
				errors <- c(errors, paste0("length of 'data' [", length(object@data),
					"] must match length of 'index' [", length(object@index), "]"))
			if ( !all(lengths(object@data) == lengths(object@index)) )
				errors <- c(errors, "lengths of 'data' must match lengths of 'index'")
			if ( length(object@data) != ddim )
				errors <- c(errors, paste0("length of 'data' [", length(object@data),
					"] must match dense extent of array [", ddim, "]"))
		} else {
			# data and index should both be arrays
			if ( !is(object@data, "matter_OR_array") || !is(object@index, "matter_OR_array") )
				errors <- c(errors, "'data' and 'index' must both be array-like when pointers are non-NULL")
			if ( length(object@data) != length(object@index) )
				errors <- c(errors, paste0("length of 'data' [", length(object@data),
					"] must match length of 'index' [", length(object@index), "]"))
			if ( length(object@data) != object@pointers[length(object@pointers)] )
				errors <- c(errors, paste0("last element of 'pointers' ",
					"[", object@pointers[length(object@pointers)], "] ",
						"must match length of 'data' [", length(object@data), "]"))
			if ( length(object@pointers) != ddim + 1 )
				errors <- c(errors, paste0("length of 'pointers' [", length(object@pointers),
					"] must match dense extent of array [", ddim, "] plus 1"))
		}
		if ( !is.null(object@domain) && length(object@domain) != sdim )
			errors <- c(errors, paste0("length of 'domain' [", length(object@domain),
				"] must match sparse extent of array [", sdim, "]"))
		if ( is.null(errors) ) TRUE else errors
	})

setClass("sparse_mat",
	contains = "sparse_arr",
	validity = function(object) {
		errors <- NULL
		if ( length(object@dim) != 2L )
			errors <- c(errors, "matrix must have exactly 2 dimensions")
		if ( is.null(errors) ) TRUE else errors
	})

setClass("sparse_vec",
	contains = "sparse_arr",
	validity = function(object) {
		errors <- NULL
		if ( length(object@dim) != 1L )
			errors <- c(errors, "vector can't have more than 1 dimension")
		if ( is.null(errors) ) TRUE else errors
	})

sparse_vec <- function(data, index, type = "double",
	length = NA_integer_, names = NULL,
	domain = NULL, offset = 0L, rowMaj = FALSE,
	tolerance = c(abs=0), sampler = "none", ...)
{
	if ( !missing(data) && !is.null(data) ) {
		if ( missing(type) && is.atomic(data) )
			type <- typeof(data)
		if ( missing(index) ) {
			nz <- data != 0
			length <- length(data)
			index <- which(nz) - 1L + offset
			data <- data[nz]
		}
	}
	if ( missing(length) ) {
		if ( is.null(domain) ) {
			length <- max(index) + 1 - offset
		} else {
			length <- length(domain)
		}
	}
	new("sparse_vec",
		data=data,
		type=as_Rtype(type),
		index=index,
		pointers=c(0, length(data)),
		domain=domain,
		offset=as.integer(offset),
		dim=length,
		names=names,
		tolerance=as_tol(tolerance),
		sampler=as_interp(sampler),
		ops=NULL,
		transpose=rowMaj, ...)
}

sparse_mat <- function(data, index, type = "double",
	nrow = NA_integer_, ncol = NA_integer_, dimnames = NULL,
	pointers = NULL, domain = NULL, offset = 0L, rowMaj = FALSE,
	tolerance = c(abs=0), sampler = "none", ...)
{
	if ( !missing(data) && is.matrix(data) )
	{
		if ( missing(type) )
			type <- typeof(data)
		if ( missing(nrow) )
			nrow <- nrow(data)
		if ( missing(ncol) )
			ncol <- ncol(data)
		if ( missing(index) ) {
			if ( rowMaj ) {
				index <- apply(data, 1L,
					function(x) {
						which(x != 0) - 1L + offset
					}, simplify=FALSE)
				data <- apply(data, 1L,
					function(x) {
						x[x != 0]
					}, simplify=FALSE)
			} else {
				index <- apply(data, 2L,
					function(x) {
						which(x != 0)  - 1L + offset
					}, simplify=FALSE)
				data <- apply(data, 2L,
					function(x) {
						x[x != 0]
					}, simplify=FALSE)
			}
			if ( isTRUE(pointers) ) {
				pointers <- c(0, cumsum(lengths(index)))
				index <- unlist(index)
				data <- unlist(data)
			}
		} else {
			if ( rowMaj ) {
				data <- as.vector(t(data))
			} else {
				data <- as.vector(data)
			}
		}
	}
	if ( is.null(pointers) ) {
		# data and index should both be lists
		if ( missing(nrow) && rowMaj )
			nrow <- length(data)
		if ( missing(nrow) && !rowMaj )
			nrow <- length(domain)
		if ( missing(ncol) && rowMaj )
			ncol <- length(domain)
		if ( missing(ncol) && !rowMaj )
			ncol <- length(data)
	} else {
		# data and index should both be arrays
		if ( missing(nrow) && rowMaj )
			nrow <- length(pointers) - 1L
		if ( missing(nrow) && !rowMaj )
			nrow <- length(domain)
		if ( missing(ncol) && rowMaj )
			ncol <- length(domain)
		if ( missing(ncol) && !rowMaj )
			ncol <- length(pointers) - 1L
	}
	new("sparse_mat",
		data=data,
		type=as_Rtype(type),
		index=index,
		pointers=pointers,
		domain=domain,
		offset=as.integer(offset),
		dim=as.integer(c(nrow, ncol)),
		dimnames=dimnames,
		tolerance=as_tol(tolerance),
		sampler=as_interp(sampler),
		ops=NULL,
		transpose=rowMaj, ...)
}

as.sparse <- function(x, ...) sparse_mat(x, ...)

is.sparse <- function(x) is(x, "sparse_arr")

setAs("sparse_arr", "sparse_vec",
	function(from) new("sparse_vec", from, dim=length(from), dimnames=NULL))

setAs("sparse_mat", "sparse_vec",
	function(from) new("sparse_vec", from, dim=length(from), dimnames=NULL))

setAs("sparse_arr", "sparse_mat",
	function(from) {
		x <- new("sparse_mat", from)
		if ( validObject(x) )
			x
	})

setAs("sparse_vec", "sparse_mat",
	function(from) {
		dm <- c(length(from), 1L)
		x <- new("sparse_mat", from, dim=dm, names=NULL)
		if ( validObject(x) )
			x
	})

setMethod("as.vector", "sparse_arr",
	function(x, mode = "any") {
		if ( mode != "any" )
			type(x) <- mode
		names(x) <- NULL
		dimnames(x) <- NULL
		as(x, "sparse_vec")[]
	})

setMethod("as.raw", "sparse_arr",
	function(x) as.vector(x, "raw"))

setMethod("as.logical", "sparse_arr",
	function(x, ...) as.vector(x, "logical"))

setMethod("as.integer", "sparse_arr",
	function(x, ...) as.vector(x, "integer"))

setMethod("as.double", "sparse_arr",
	function(x, ...) as.vector(x, "double"))

setMethod("as.numeric", "sparse_arr",
	function(x, ...) as.vector(x, "double"))

setMethod("as.matrix", "sparse_arr", function(x) as.matrix(x[]))

setMethod("as.array", "sparse_arr", function(x) as.array(x[]))

setMethod("describe_for_display", "sparse_mat", function(x) {
	desc1 <- paste0("<", nrow(x), " row x ", ncol(x), " col> ", class(x))
	desc2 <- paste0("sparse ", type(x), " matrix")
	paste0(desc1, " :: ", desc2)
})

setMethod("describe_for_display", "sparse_vec", function(x) {
	desc1 <- paste0("<", length(x), " length> ", class(x))
	desc2 <- paste0("sparse ", type(x), " vector")
	paste0(desc1, " :: ", desc2)
})

setMethod("preview_for_display", "sparse_mat", function(x) {
	hdr <- preview_matrix_data(x, zero.print=".")
	if ( rowMaj(x) ) {
		if ( is.null(colnames(x)) && !is.null(domain(x)) ) {
			n <- ncol(hdr)
			if ( colnames(hdr)[n] == "..." ) {
				colnames(hdr) <- c(paste0("(,", domain(x)[1:(n - 1)], ")"), "...")
			} else {
				colnames(hdr) <- paste0("(,", domain(x)[1:n], ")")
			}
		}
	} else {
		if ( is.null(rownames(x)) && !is.null(domain(x)) ) {
			n <- nrow(hdr)
			if ( rownames(hdr)[n] == "..." ) {
				rownames(hdr) <- c(paste0("(", domain(x)[1:(n - 1)], ",)"), "...")
			} else {
				rownames(hdr) <- paste0("(", domain(x)[1:n], ",)")
			}
		}
	}
	print(hdr, quote=FALSE, right=TRUE)
	cat("(", nnzero(x), "/", prod(dim(x)), " non-zero elements: ",
		round(nnzero(x) / prod(dim(x)), 4) * 100, "% density)\n", sep="")
})

setMethod("preview_for_display", "sparse_vec", function(x) {
	hdr <- preview_vector_data(x, zero.print=".")
	if ( is.null(colnames(x)) && !is.null(domain(x)) ) {
		n <- ncol(hdr)
		if ( colnames(hdr)[n] == "..." ) {
			colnames(hdr) <- c(paste0("(", domain(x)[1:(n - 1)], ")"), "...")
		} else {
			colnames(hdr) <- paste0("(", domain(x)[1:n], ")")
		}
	}
	print(hdr, quote=FALSE, right=TRUE)
	cat("(", nnzero(x), "/", length(x), " non-zero elements: ",
		round(nnzero(x) / length(x), 4) * 100, "% density)\n", sep="")
})

setMethod("vm_used", "sparse_arr", function(x) {
	vm_index <- vm_used(atomindex(x))
	vm_data <- vm_used(atomdata(x))
	size_bytes(sum(c(vm_index, vm_data), na.rm=TRUE))
})

setMethod("shm_used", "sparse_arr", function(x) {
	shm_index <- shm_used(atomindex(x))
	shm_data <- shm_used(atomdata(x))
	size_bytes(sum(c(shm_index, shm_data), na.rm=TRUE))
})

setMethod("mem_realized", "sparse_arr", function(x) {
	vm_index <- mem_realized(atomindex(x))
	vm_data <- mem_realized(atomdata(x))
	size_bytes(sum(c(vm_index, vm_data), na.rm=TRUE))
})

setMethod("fetch", "sparse_arr",
	function(object, ..., BPPARAM = bpparam()) {
		atomindex(object) <- fetch(atomindex(object), ..., BPPARAM=BPPARAM)
		atomdata(object) <- fetch(atomdata(object), ..., BPPARAM=BPPARAM)
		object
	})

setMethod("flash", "sparse_arr",
	function(object, ..., BPPARAM = bpparam()) {
		atomindex(object) <- flash(atomindex(object), ..., BPPARAM=BPPARAM)
		atomdata(object) <- flash(atomdata(object), ..., BPPARAM=BPPARAM)
		object
	})

setMethod("atomdata", "sparse_arr",
	function(object, i = NULL, ...)
	{
		if ( !is.null(i) ) {
			if ( is_sparse_arr_LIL(object) ) {
				object@data[[i]]
			} else {
				j <- c(object@pointers[i] + 1L, object@pointers[i + 1L])
				if ( j[1L] != j[2L] ) {
					object@data[j[1L]:j[2L]]
				} else {
					vector(type(object))
				}
			}
		} else {
			object@data
		}
	})

setMethod("aindex", "sparse_arr",
	function(object, ...) atomindex(object, ...))

setMethod("atomindex", "sparse_arr",
	function(object, i = NULL, ...)
	{
		if ( !is.null(i) ) {
			if ( is_sparse_arr_LIL(object) ) {
				object@index[[i]]
			} else {
				j <- c(object@pointers[i] + 1L, object@pointers[i + 1L])
				if ( j[1L] != j[2L] ) {
					object@index[j[1L]:j[2L]]
				} else {
					vector(type(object))
				}
			}
		} else {
			object@index
		}
	})

setReplaceMethod("atomindex", "sparse_arr",
	function(object, ..., value)
	{
		object@index <- value
		if ( validObject(object) )
			object
	})

setMethod("pointers", "sparse_arr", function(object) object@pointers)

setReplaceMethod("pointers", "sparse_arr", function(object, value) {
	object@pointers <- value
	if ( validObject(object) )
		object
})

setMethod("domain", "sparse_arr", function(x) x@domain)

setReplaceMethod("domain", "sparse_arr", function(x, value) {
	x@domain <- value
	if ( length(x@dim) > 2L )
		matter_error("more than 2 dimensions are not supported yet")
	if ( length(x@dim) == 1L ) {
		x@dim <- length(x@domain)
		x@dimnames <- NULL
	} else if ( x@transpose ) {
		x@dim <- c(x@dim[1L], length(x@domain))
		if ( !is.null(x@dimnames) )
			x@dimnames <- list(x@dimnames[[1L]], NULL)
	} else {
		x@dim <- c(length(x@domain), x@dim[length(x@dim)])
		if ( !is.null(x@dimnames) )
			x@dimnames <- list(NULL, x@dimnames[[length(x@dim)]])
	}
	if ( validObject(x) )
		x
})

setMethod("tolerance", "sparse_arr", function(object, ...) object@tolerance)

setReplaceMethod("tolerance", "sparse_arr", function(object, ..., value) {
	object@tolerance <- as_tol(value)
	object
})

setMethod("sampler", "sparse_arr", function(object, ...) object@sampler)

setReplaceMethod("sampler", "sparse_arr", function(object, ..., value) {
	object@sampler <- as_interp(value)
	object
})

setMethod("nnzero", "sparse_arr",
	function(x, na.counted = NA) {
		if ( !missing(na.counted) )
			matter_warn("argument 'na.counted' will be ignored")
		if ( is_sparse_arr_LIL(x) ) {
			sum(lengths(x@data))
		} else {
			length(x@data)
		}
	})

setMethod("lengths", "sparse_arr",
	function(x, use.names = TRUE) {
		if ( is_sparse_arr_LIL(x) ) {
			lens <- lengths(x@data)
		} else {
			lens <- diff(x@pointers)
		}
		if ( x@transpose ) {
			set_names(lens, rownames(x))
		} else {
			set_names(lens, colnames(x))
		}
	})

setMethod("dim", "sparse_vec", function(x) NULL)

is_sparse_arr_CSX <- function(x) {
	!is.null(x@pointers)
}

is_sparse_arr_LIL <- function(x) {
	is.null(x@pointers)
}

convert_sparse_arr_CSX <- function(x) {
	if ( is_sparse_arr_CSX(x) )
		return(x)
	x@pointers <- c(0, cumsum(lengths(x@index)))
	x@index <- unlist(x@index)
	x@data <- unlist(x@data)
	if ( validObject(x) )
		x
}

convert_sparse_arr_LIL <- function(x) {
	if ( is_sparse_arr_LIL(x) )
		return(x)
	fun <- function(i, j, X) {
		if ( i == j ) {
			X[integer(0)]
		} else {
			X[(i + 1L):j]
		}
	}
	pointers <- x@pointers
	x@data <- mapply(fun, pointers[-length(pointers)],
		pointers[-1L], MoreArgs=list(X=x@data), SIMPLIFY=FALSE)
	x@index <- mapply(fun, pointers[-length(pointers)],
		pointers[-1L], MoreArgs=list(X=x@index), SIMPLIFY=FALSE)
	x@pointers <- NULL
	if ( validObject(x) )
		x
}

subset_sparse_arr_elts <- function(x, i = NULL)
{
	if ( !is(x, "sparse_vec") )
		matter_error("linear endomorphic subsetting only supported for sparse vectors")
	if ( is.null(i) )
		return(x)
	if ( is.null(domain(x)) ) {
		domain <- (i - 1L) + x@offset
	} else {
		domain <- domain(x)[i]
	}
	domain(x) <- domain
	x@ops <- subset_ops(x@ops, list(i))
	if ( validObject(x) )
		x
}

get_sparse_arr_elts <- function(x, i = NULL)
{
	y <- .Call(C_getSparseArray, x, i, PACKAGE="matter")
	y <- set_names(y, names(x), i)
	y
}

set_sparse_arr_elts <- function(x, i = NULL, value = 0)
{
	matter_error("sparse array assignment is not supported") # TODO?
}

subset_sparse_mat_submatrix <- function(x, i = NULL, j = NULL)
{
	if ( x@transpose ) {
		ii <- j
		jj <- i
	} else {
		ii <- i
		jj <- j
	}
	if ( !is.null(jj) ) {
		if ( is_sparse_arr_CSX(x) )
			x <- convert_sparse_arr_LIL(x)
		if ( is.matter(x@data) ) {
			x@data <- x@data[jj,drop=NULL]
		} else {
			x@data <- x@data[jj,drop=FALSE]
		}
		if ( is.matter(x@index) ) {
			x@index <- x@index[jj,drop=NULL]
		} else {
			x@index <- x@index[jj,drop=FALSE]
		}
	}
	if ( !is.null(ii) ) {
		if ( is.null(domain(x)) ) {
			domain <- (ii - 1L) + x@offset
		} else {
			domain <- domain(x)[ii]
		}
		x@domain <- domain
	}
	nrow <- if (is.null(i)) nrow(x) else length(i)
	ncol <- if (is.null(j)) ncol(x) else length(j)
	x@dim <- c(nrow, ncol)
	x@dimnames <- subset_dimnames(x@dimnames, list(i, j))
	x@ops <- subset_ops(x@ops, list(i, j))
	if ( validObject(x) )
		x
}

get_sparse_mat_submatrix <- function(x, i = NULL, j = NULL, drop = FALSE)
{
	y <- .Call(C_getSparseMatrix, x, i, j)
	y <- set_dimnames(y, dimnames(x), list(i, j))
	if ( drop )
		y <- drop(y)
	y
}

set_sparse_mat_submatrix <- function(x, i = NULL, j = NULL, value = 0)
{
	matter_error("sparse array assignment is not supported") # TODO?
}

setMethod("cbind2", c("sparse_mat", "sparse_mat"),
	function(x, y, ...) {
		if ( nrow(x) != nrow(y) )
			matter_error("number of rows of matrices must match")
		if ( rowMaj(x) || rowMaj(y) )
			matter_error("can't cbind row-major matrices")
		if ( !is.null(x@ops) )
			matter_warn("deferred operations will be dropped")
		if ( is.null(x@pointers) && is.null(y@pointers) ) {
			pointers <- NULL
		} else {
			if ( is.null(x@pointers) )
				x <- convert_sparse_arr_CSX(x)
			if ( is.null(y@pointers) )
				y <- convert_sparse_arr_CSX(y)
			pointers <- c(x@pointers, y@pointers + max(x@pointers))
		}
		data <- c(x@data, y@data)
		index <- c(x@index, y@index)
		new(class(x), x, data=data,
			index=index, pointers=pointers,
			dim=c(nrow(x), ncol(x) + ncol(y)),
			dimnames=cbind_dimnames(x, y),
			ops=NULL)
	})

setMethod("rbind2", c("sparse_mat", "sparse_mat"),
	function(x, y, ...) {
		if ( ncol(x) != ncol(y) )
			matter_error("number of columns of matrices must match")
		if ( !x@transpose || !y@transpose )
			matter_error("can't rbind column-major matrices")
		if ( !is.null(x@ops) )
			matter_warn("deferred operations will be dropped")
		if ( is.null(x@pointers) && is.null(y@pointers) ) {
			pointers <- NULL
		} else {
			if ( is.null(x@pointers) )
				x <- convert_sparse_arr_CSX(x)
			if ( is.null(y@pointers) )
				y <- convert_sparse_arr_CSX(y)
			pointers <- c(x@pointers, y@pointers + max(x@pointers))
		}
		data <- c(x@data, y@data)
		index <- c(x@index, y@index)
		new(class(x), x, data=data,
			index=index, pointers=pointers,
			dim=c(nrow(x) + nrow(y), ncol(x)),
			dimnames=rbind_dimnames(x, y),
			ops=NULL)
	})

cbind.sparse_arr <- cbind_any

rbind.sparse_arr <- rbind_any

setMethod("[", c(x = "sparse_arr"),
	function(x, i, j, ..., drop = TRUE) {
		narg <- nargs() - 1L - !missing(drop)
		if ( (narg == 1L && !missing(i)) || is.null(dim(x)) ) {
			i <- as_subscripts(i, x)
			if ( is_null_or_na(drop) ) {
				subset_sparse_arr_elts(x, i)
			} else {
				get_sparse_arr_elts(x, i)
			}
		} else {
			if ( narg != 1L && narg != length(dim(x)) )
				matter_error("incorrect number of dimensions")
			if ( missing(i) && missing(j) && missing(drop) )
				drop <- FALSE
			i <- as_row_subscripts(i, x)
			j <- as_col_subscripts(j, x)
			if ( is_null_or_na(drop) ) {
				subset_sparse_mat_submatrix(x, i, j)
			} else {
				get_sparse_mat_submatrix(x, i, j, drop)
			}
		}
	})

setReplaceMethod("[",
	c(x = "sparse_arr", i = "ANY", j = "ANY", value = "ANY"),
	function(x, i, j, ..., value) {
		narg <- nargs() - 2L
		if ( (narg == 1L && !missing(i)) ) {
			i <- as_subscripts(i, x)
			set_sparse_arr_elts(x, i, value)
		} else {
			if ( narg != 1L && narg != length(dim(x)) )
				matter_error("incorrect number of dimensions")
			i <- as_row_subscripts(i, x)
			j <- as_col_subscripts(j, x)
			set_sparse_mat_submatrix(x, i, j, value)
		}
	})

setMethod("Arith", c(e1 = "sparse_arr", e2 = "vector"),
	function(e1, e2) register_op(e1, .Generic, e2, FALSE))

setMethod("Arith", c(e1 = "sparse_arr", e2 = "array"),
	function(e1, e2) register_op(e1, .Generic, e2, FALSE))

setMethod("Arith", c(e1 = "vector", e2 = "sparse_arr"),
	function(e1, e2) register_op(e2, .Generic, e1, TRUE))

setMethod("Arith", c(e1 = "array", e2 = "sparse_arr"),
	function(e1, e2) register_op(e2, .Generic, e1, TRUE))

setMethod("exp", "sparse_arr", function(x) register_op(x, "exp"))
setMethod("log", "sparse_arr", function(x) register_op(x, "log"))
setMethod("log2", "sparse_arr", function(x) register_op(x, "log2"))
setMethod("log10", "sparse_arr", function(x) register_op(x, "log10"))
setMethod("log1p", "sparse_arr", function(x) register_op(x, "log1p"))

setMethod("rowMaj", "sparse_arr", function(x)
{
	isTRUE(x@transpose)
})

setMethod("t", "sparse_arr", function(x)
{
	if ( length(dim(x)) > 2L )
		matter_error("argument is not a matrix")
	x@transpose <- !x@transpose
	x@dim <- rev(x@dim)
	x@dimnames <- rev(x@dimnames)
	x@ops <- t_ops(x@ops)
	if ( validObject(x) )
		x
})

setMethod("t", "sparse_vec", function(x)
{
	t(as(x, "sparse_mat"))
})

setMethod("%*%", c("sparse_mat", "vector"), function(x, y)
{
	if ( rowMaj(x) ) {
		rmatmul(x, as.matrix(y), useOuter=FALSE)
	} else {
		rmatmul(x, as.matrix(y), useOuter=TRUE)
	}
})

setMethod("%*%", c("vector", "sparse_mat"), function(x, y)
{
	if ( rowMaj(y) ) {
		lmatmul(t(x), y, useOuter=TRUE)
	} else {
		lmatmul(t(x), y, useOuter=FALSE)
	}
})

setMethod("%*%", c("sparse_mat", "matrix"), function(x, y)
{
	if ( rowMaj(x) ) {
		rmatmul(x, y, useOuter=FALSE)
	} else {
		rmatmul(x, y, useOuter=TRUE)
	}
})

setMethod("%*%", c("matrix", "sparse_mat"), function(x, y)
{
	if ( rowMaj(y) ) {
		lmatmul(x, y, useOuter=TRUE)
	} else {
		lmatmul(x, y, useOuter=FALSE)
	}
})

setMethod("crossprod", c("sparse_mat", "ANY"),
	function(x, y = NULL, ...) t(x) %*% y)

setMethod("crossprod", c("ANY", "sparse_mat"),
	function(x, y = NULL, ...) t(x) %*% y)

setMethod("tcrossprod", c("sparse_mat", "ANY"),
	function(x, y = NULL, ...) x %*% t(y))

setMethod("tcrossprod", c("ANY", "sparse_mat"),
	function(x, y = NULL, ...) x %*% t(y))
kuwisdelu/matter documentation built on Oct. 19, 2024, 10:31 a.m.