#' MethylCal calibration plots
#'
#' Visualisation of MethylCal calibration of the standard control experiment.
#'
#' @param data Formatted input data frame obtained from the function
#' \code{\link{Formatting}}.
#' @param Target Name of the target DMR/CpG island/gene to be visualised.
#' @param prior Prior distribution set-up for the random effects and
#' the Latent Gaussian Field (Rue et al., 2009). Three different priors
#' are implemented:
#' \itemize{
#' \item \code{LG}: log-Gamma prior is the default prior with
#' \code{a = 1} and \code{b = 0.1} parametrization;
#' \item \code{PC}: Penalized Complexity prior (Simpson et al.,
#' 2017);
#' \item \code{HC}: Half-Cauchy prior (Wang X et al., 2018).
#' }
#' @param level Level of the posterior predictive region.
#' @param dir In Unix-specific OS, user-specified directory where the
#' plots in \code{\link[grDevices]{pdf}} format are saved. If the directory
#' is not specified, figures are saved in the current working directory.
#' @param printing If \code{printing = TRUE} (default), messages are
#' printed on the screen regarding the estimated models (mlik = marginal
#' likelihood, DIC = Deviance Information Criteria, RSS = Residual
#' Sum of Squares) and the correction of the apparent methylation levels
#' (Ochoa et al., 2019).
#' @param cex_par Number indicating the amount by which plotting text
#' and symbols should be scaled relative to the default (\code{cex_par = 1}).
#'
#' @keywords Data visualisation, MethylCal calibration, standard control
#' experiment
#'
#' @import INLA
#' @import lattice
#' @import latticeExtra
#'
#' @export
#'
#' @return This function returns three plots. The first scatterplot
#' depicts the values of the recorded apparent methylation levels at
#' each Actual Methylation Percentage (AMP) with superimposed MethylCal's
#' calibration curve (Ochoa et al., 2019) for each CpG (red dashed
#' line). The second plot presents the apparent methylation levels at
#' consecutive CpGs stratified by AMPs with superimposed the predicted
#' values (red dashed line) as well as the (1-level)\% posterior predictive
#' region (dashed-dotted red lines). Finally, the third plot is the
#' scatterplot of the corrected actual methylation percentage at each
#' AMP for all CpGs within a DRM/CpG island/gene.
#'
#' In Unix-specific OS, figures are saved in the current directory,
#' unless otherwise specified by the user, in \code{\link{pdf}} format.
#' In Windows OS, figures are printed on the screen.
#'
#' @references Ochoa E, Zuber V, Fernandez-Jimenez N, Bilbao JR, Clark
#' GR, Maher ER and Bottolo L. MethylCal: Bayesian calibration of methylation
#' levels. Submitted. 2019.
#' @references Wang X, Ryan YY, Faraway JJ. Bayesian Regression Modeling
#' with INLA. 2018, 1st edition. Chapman and Hall/CRC.
#' @references Simpson S, Rue H, Riebler A, Martins TG, Sorbye SH. Penalising
#' model component complexity: A principled, practical approach to constructing
#' priors. Statist Sci. 2017; 1:1-28. (\href{https://doi.org/10.1214/16-STS576}{doi})
#' @references Rue H, Martino S, Chopin N. Approximate Bayesian inference
#' for latent Gaussian models by using integrated nested Laplace approximations.
#' J Roy Stat Soc B Met. 2009; 71(2):319-392. (\href{https://doi.org/10.1111/j.1467-9868.2008.00700.x}{doi})
#'
#' @examples
#' data(BWS_data)
#' AMP = c(0, 25, 50, 75, 100)
#' data = Formatting(BWS_data, AMP = AMP)
#' MethylCalCalibrationPlot(data, Target = "KCNQ1OT1", prior = "HC")
#'
#' data(Celiac_data)
#' AMP = c(0, 12.5, 25, 37.5, 50, 62.5, 87.5, 100)
#' data = Formatting(Celiac_data, AMP = AMP)
#' MethylCalCalibrationPlot(data, Target = "NFKBIA", level = 0.99, printing = FALSE)
MethylCalCalibrationPlot = function(data, Target = NULL, prior = "LG", level = 0.95, dir = NULL, printing = TRUE, cex_par = 1.25)
{
if (length(unique(data$Target)) > 1)
{
if (is.null(Target))
{
stop("Please provide the name of the Target for the analysis")
} else if (sum(data$Target == Target) == 0) {
stop("Target name not recognised")
}
} else {
Target = unique(data$Target)
}
f_MethylCal = function(data, CpG_group, AMP_group, MethylCal_idx, prior, n_predict = 10 ^4)
{
n_data = nrow(data)
p_data = ncol(data)
n_CpG = max(data$CpG_group)
n_AMP = max(data$AMP_group)
CpG_group_idx = which(data$CpG_group == CpG_group)
CpG_AMP_idx = which(data$CpG_group == CpG_group & data$AMP_group == AMP_group)
predict_MethylCal = rep(NA, n_predict)
if (MethylCal_idx == 1)
{
formula_MethylCal = y ~ x1 + x2 + x3
}
if (MethylCal_idx == 2)
{
formula_MethylCal = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE)
}
if (MethylCal_idx == 3)
{
formula_MethylCal = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE) + f(CpG_group, model = "iid", hyper = prior, constr = TRUE)
}
if (MethylCal_idx == 4)
{
formula_MethylCal = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE) + f(CpG_pos, model = "rw1", hyper = prior, scale.model = TRUE)
}
if (MethylCal_idx == 5)
{
formula_MethylCal = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE) + f(CpG_group, model = "iid2d", n = 2 * n_CpG, constr = TRUE) + f(xCpG_group, AMP_group, copy = "CpG_group")
}
fit_MethylCal = inla(formula_MethylCal, family = "gaussian", data = data, control.predictor = list(compute = TRUE))
fit_spline = stats::spline(data$x[CpG_group_idx], fit_MethylCal$summary.fitted$mean[CpG_group_idx], method = "natural", n = n_predict)
predict_MethylCal = fit_spline$y
m = fit_spline$y - data$y[CpG_AMP_idx]
if (all(diff(m) >= 0))
{
m = m ^2
idx_min = which.min(m)
x = seq(0, 100, length.out = n_predict)[idx_min]
m = (fit_spline$y - data$y[CpG_AMP_idx])[idx_min]
} else {
m = m ^2
idx_min = sort(m, index.return = TRUE)$ix[1 : (10 ^2)]
idx_min = idx_min[which.min((seq(0, 100, length.out = n_predict)[idx_min] - data$x[CpG_AMP_idx]) ^2)]
x = seq(0, 100, length.out = n_predict)[idx_min]
m = (fit_spline$y - data$y[CpG_AMP_idx])[idx_min]
print("Non-decreasing function")
}
return(x)
}
Sys_info = Sys.info()
if (is.null(dir))
{
dir = getwd()
}
cat(rep("\n", 1))
print(paste("Target", Target, sep = " "))
cat(rep("\n", 1))
DIC_remove = 1
n_predict = 200
idx = which(data$Target == Target)
data = data[idx, ]
data$x1 = data$x ^1
data$x2 = data$x ^2
data$x3 = data$x ^3
data = data[!is.na(data$CpG_pos), ]
n_data = nrow(data)
p_data = ncol(data)
n_CpG = length(unique(data$CpG_pos))
n_CpG_plot = min(6, n_CpG)
n_AMP = length(unique(data$AMP_group_label))
AMP = sort(unique(data$x))
AMP_level = as.character(data$AMP_group_label)[1 : n_AMP]
data$CpG_group = rep(1 : n_CpG, each = n_AMP)
n_predict = n_predict + 1
x_pred = seq(from = 0, to = 100, length.out = n_predict)
CpG_group = rep(NA, n_CpG * n_predict)
x_pred_plot = rep(NA, n_CpG * n_predict)
q = stats::qnorm(level + (1 - level) /2)
for (s in 1 : n_CpG)
{
CpG_idx = which(data$CpG_group == s)
CpG_group[(1 : n_predict) + n_predict * (s - 1)] = s
data_CpG = data[CpG_idx, ]
x_pred_plot[(1 : n_predict) + n_predict * (s - 1)] = x_pred
}
data$xCpG_group = data$CpG_group + max(data$CpG_group)
if (prior == "LG")
{
prior = list(prec = list(prior = "loggamma", param = c(1, 0.1)))
} else if (prior == "LGEB") {
stop("Empirical Bayes LogGamma prior to be implemented")
} else if (prior == "PC") {
sdy = stats::sd(data$y, na.rm = TRUE)
prior = list(prec = list(prior = "pc.prec", param = c(3 * sdy, 0.01)))
} else if (prior == "HC") {
halfcauchy = "expression:
lambda = 0.022;
precision = exp(log_precision);
logdens = -1.5 * log_precision - log(pi * lambda) - log(1 + 1 /(precision * lambda ^2));
log_jacobian = log_precision;
return(logdens + log_jacobian);"
prior = list(prec = list(prior = halfcauchy))
}
formula_MethylCal_1 = y ~ x1 + x2 + x3
formula_MethylCal_2 = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE)
formula_MethylCal_3 = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE) + f(CpG_group, model = "iid", hyper = prior, constr = TRUE)
formula_MethylCal_4 = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE) + f(CpG_pos, model = "rw1", hyper = prior, scale.model = TRUE)
formula_MethylCal_5 = y ~ x1 + x2 + x3 + f(AMP_group, model = "iid", hyper = prior, constr = TRUE) + f(CpG_group, model = "iid2d", n = 2 * n_CpG, constr = TRUE) + f(xCpG_group, AMP_group, copy = "CpG_group")
fit_MethylCal_1 = inla(formula_MethylCal_1, family = "gaussian", control.compute = list(dic = TRUE, waic = TRUE), control.predictor = list(compute = TRUE), data = data)
if (printing == TRUE)
{
print("Model 1 ...")
}
fit_MethylCal_2 = inla(formula_MethylCal_2, family = "gaussian", control.compute = list(dic = TRUE, waic = TRUE), control.predictor = list(compute = TRUE), data = data)
if (printing == TRUE)
{
print("Model 1 estimated")
print("Model 2 ...")
}
fit_MethylCal_3 = inla(formula_MethylCal_3, family = "gaussian", control.compute = list(dic = TRUE, waic = TRUE), control.predictor = list(compute = TRUE), data = data)
if (printing == TRUE)
{
print("Model 2 estimated")
print("Model 3 ...")
}
fit_MethylCal_4 = inla(formula_MethylCal_4, family = "gaussian", control.compute = list(dic = TRUE, waic = TRUE), control.predictor = list(compute = TRUE), data = data)
if (printing == TRUE)
{
print("Model 3 estimated")
print("Model 4 ...")
}
fit_MethylCal_5 = inla(formula_MethylCal_5, family = "gaussian", control.compute = list(dic = TRUE, waic = TRUE), control.predictor = list(compute = TRUE), data = data)
if (printing == TRUE)
{
print("Model 4 estimated")
cat(rep("\n", 1))
}
mlik_MethylCal = rep(NA, 5)
mlik_MethylCal[1] = fit_MethylCal_1$mlik[2]
mlik_MethylCal[2] = fit_MethylCal_2$mlik[2]
mlik_MethylCal[3] = fit_MethylCal_3$mlik[2]
mlik_MethylCal[4] = fit_MethylCal_4$mlik[2]
mlik_MethylCal[5] = fit_MethylCal_5$mlik[2]
DIC_MethylCal = rep(NA, 5)
DIC_MethylCal[1] = fit_MethylCal_1$dic[[1]]
DIC_MethylCal[2] = fit_MethylCal_2$dic[[1]]
DIC_MethylCal[3] = fit_MethylCal_3$dic[[1]]
DIC_MethylCal[4] = fit_MethylCal_4$dic[[1]]
DIC_MethylCal[5] = fit_MethylCal_5$dic[[1]]
fitted_MethylCal = matrix(data = NA, nrow = n_CpG * n_AMP, ncol = 5)
fitted_MethylCal[, 1] = fit_MethylCal_1$summary.fitted.values$mean
fitted_MethylCal[, 2] = fit_MethylCal_2$summary.fitted.values$mean
fitted_MethylCal[, 3] = fit_MethylCal_3$summary.fitted.values$mean
fitted_MethylCal[, 4] = fit_MethylCal_4$summary.fitted.values$mean
fitted_MethylCal[, 5] = fit_MethylCal_5$summary.fitted.values$mean
fitted_MethylCal[fitted_MethylCal[, 1] < 0, 1] = 0
fitted_MethylCal[fitted_MethylCal[, 1] > 100, 1] = 100
fitted_MethylCal[fitted_MethylCal[, 2] < 0, 2] = 0
fitted_MethylCal[fitted_MethylCal[, 2] > 100, 2] = 100
fitted_MethylCal[fitted_MethylCal[, 3] < 0, 3] = 0
fitted_MethylCal[fitted_MethylCal[, 3] > 100, 3] = 100
fitted_MethylCal[fitted_MethylCal[, 4] < 0, 4] = 0
fitted_MethylCal[fitted_MethylCal[, 4] > 100, 4] = 100
fitted_MethylCal[fitted_MethylCal[, 5] < 0, 5] = 0
fitted_MethylCal[fitted_MethylCal[, 5] > 100, 5] = 100
RSS_MethylCal = rep(NA, 5)
RSS_MethylCal[1] = sum((data$y - fitted_MethylCal[, 1]) ^2, na.rm = TRUE)
RSS_MethylCal[2] = sum((data$y - fitted_MethylCal[, 2]) ^2, na.rm = TRUE)
RSS_MethylCal[3] = sum((data$y - fitted_MethylCal[, 3]) ^2, na.rm = TRUE)
RSS_MethylCal[4] = sum((data$y - fitted_MethylCal[, 4]) ^2, na.rm = TRUE)
RSS_MethylCal[5] = sum((data$y - fitted_MethylCal[, 5]) ^2, na.rm = TRUE)
if (printing == TRUE)
{
print("Estimated models:")
print(c("", "Model 1", "Model 2", "Model 3", "Model 4"))
print(c("mlik", round(mlik_MethylCal[-DIC_remove], 2)))
print(c("DIC", round(DIC_MethylCal[-DIC_remove], 2)))
print(c("RSS", round(RSS_MethylCal[-DIC_remove], 2)))
cat(rep("\n", 1))
}
DIC_MethylCal_tmp = DIC_MethylCal
DIC_MethylCal_tmp[DIC_remove] = NA
MethylCal_idx = which(DIC_MethylCal_tmp == min(DIC_MethylCal_tmp, na.rm = TRUE))
predict_MethylCal = rep(NA, n_CpG * n_predict)
if (MethylCal_idx == 1)
{
for (s in unique(data$CpG_group))
{
CpG_group_idx = which(data$CpG_group == s)
fit_spline = stats::spline(data$x[CpG_group_idx], fit_MethylCal_1$summary.fitted$mean[CpG_group_idx], method = "natural", n = n_predict)
predict_MethylCal[(1 : n_predict) + n_predict * (s - 1)] = fit_spline$y
}
predict_MethylCal[predict_MethylCal < 0] = 0
predict_MethylCal[predict_MethylCal > 100] = 100
predict_MethylCal_CI_low = fit_MethylCal_1$summary.fitted.values$mean - q * fit_MethylCal_1$summary.fitted.values$sd
predict_MethylCal_CI_high = fit_MethylCal_1$summary.fitted.values$mean + q * fit_MethylCal_1$summary.fitted.values$sd
predict_MethylCal_CI_low[predict_MethylCal_CI_low < 0] = 0
predict_MethylCal_CI_low[predict_MethylCal_CI_low > 100] = 100
predict_MethylCal_CI_high[predict_MethylCal_CI_high < 0 ] = 0
predict_MethylCal_CI_high[predict_MethylCal_CI_high > 100] = 100
}
if (MethylCal_idx == 2)
{
for (s in unique(data$CpG_group))
{
CpG_group_idx = which(data$CpG_group == s)
fit_spline = stats::spline(data$x[CpG_group_idx], fit_MethylCal_2$summary.fitted$mean[CpG_group_idx], method = "natural", n = n_predict)
predict_MethylCal[(1 : n_predict) + n_predict * (s - 1)] = fit_spline$y
}
predict_MethylCal[predict_MethylCal < 0] = 0
predict_MethylCal[predict_MethylCal > 100] = 100
predict_MethylCal_CI_low = fit_MethylCal_2$summary.fitted.values$mean - q * fit_MethylCal_2$summary.fitted.values$sd
predict_MethylCal_CI_high = fit_MethylCal_2$summary.fitted.values$mean + q * fit_MethylCal_2$summary.fitted.values$sd
predict_MethylCal_CI_low[predict_MethylCal_CI_low < 0] = 0
predict_MethylCal_CI_low[predict_MethylCal_CI_low > 100] = 100
predict_MethylCal_CI_high[predict_MethylCal_CI_high < 0 ] = 0
predict_MethylCal_CI_high[predict_MethylCal_CI_high > 100] = 100
}
if (MethylCal_idx == 3)
{
for (s in unique(data$CpG_group))
{
CpG_group_idx = which(data$CpG_group == s)
fit_spline = stats::spline(data$x[CpG_group_idx], fit_MethylCal_3$summary.fitted$mean[CpG_group_idx], method = "natural", n = n_predict)
predict_MethylCal[(1 : n_predict) + n_predict * (s - 1)] = fit_spline$y
}
predict_MethylCal[predict_MethylCal < 0] = 0
predict_MethylCal[predict_MethylCal > 100] = 100
predict_MethylCal_CI_low = fit_MethylCal_3$summary.fitted.values$mean - q * fit_MethylCal_3$summary.fitted.values$sd
predict_MethylCal_CI_high = fit_MethylCal_3$summary.fitted.values$mean + q * fit_MethylCal_3$summary.fitted.values$sd
predict_MethylCal_CI_low[predict_MethylCal_CI_low < 0] = 0
predict_MethylCal_CI_low[predict_MethylCal_CI_low > 100] = 100
predict_MethylCal_CI_high[predict_MethylCal_CI_high < 0 ] = 0
predict_MethylCal_CI_high[predict_MethylCal_CI_high > 100] = 100
}
if (MethylCal_idx == 4)
{
for (s in unique(data$CpG_group))
{
CpG_group_idx = which(data$CpG_group == s)
fit_spline = stats::spline(data$x[CpG_group_idx], fit_MethylCal_4$summary.fitted$mean[CpG_group_idx], method = "natural", n = n_predict)
predict_MethylCal[(1 : n_predict) + n_predict * (s - 1)] = fit_spline$y
}
predict_MethylCal[predict_MethylCal < 0] = 0
predict_MethylCal[predict_MethylCal > 100] = 100
predict_MethylCal_CI_low = fit_MethylCal_4$summary.fitted.values$mean - q * fit_MethylCal_4$summary.fitted.values$sd
predict_MethylCal_CI_high = fit_MethylCal_4$summary.fitted.values$mean + q * fit_MethylCal_4$summary.fitted.values$sd
predict_MethylCal_CI_low[predict_MethylCal_CI_low < 0] = 0
predict_MethylCal_CI_low[predict_MethylCal_CI_low > 100] = 100
predict_MethylCal_CI_high[predict_MethylCal_CI_high < 0 ] = 0
predict_MethylCal_CI_high[predict_MethylCal_CI_high > 100] = 100
}
if (MethylCal_idx == 5)
{
for (s in unique(data$CpG_group))
{
CpG_group_idx = which(data$CpG_group == s)
fit_spline = stats::spline(data$x[CpG_group_idx], fit_MethylCal_5$summary.fitted$mean[CpG_group_idx], method = "natural", n = n_predict)
predict_MethylCal[(1 : n_predict) + n_predict * (s - 1)] = fit_spline$y
}
predict_MethylCal[predict_MethylCal < 0] = 0
predict_MethylCal[predict_MethylCal > 100] = 100
predict_MethylCal_CI_low = fit_MethylCal_5$summary.fitted.values$mean - q * fit_MethylCal_5$summary.fitted.values$sd
predict_MethylCal_CI_high = fit_MethylCal_5$summary.fitted.values$mean + q * fit_MethylCal_5$summary.fitted.values$sd
predict_MethylCal_CI_low[predict_MethylCal_CI_low < 0] = 0
predict_MethylCal_CI_low[predict_MethylCal_CI_low > 100] = 100
predict_MethylCal_CI_high[predict_MethylCal_CI_high < 0 ] = 0
predict_MethylCal_CI_high[predict_MethylCal_CI_high > 100] = 100
}
if (printing != TRUE)
{
print("Correcting apparent methylation levels ...")
}
data$y_correct_MethylCal = NA
counter = 0
for (s in 1 : n_CpG)
{
CpG_idx = which(data$CpG_group == s)
data_CpG = data[CpG_idx, ]
if (!all(is.na(data_CpG$y)))
{
for (l in 1 : n_AMP)
{
y_correct = f_MethylCal(data = data, CpG_group = s, AMP_group = l, MethylCal_idx = MethylCal_idx, prior = prior)
y_correct[y_correct < 0] = 0
y_correct[y_correct > 100] = 100
data$y_correct_MethylCal[l + (s - 1) * n_AMP] = y_correct
counter = counter + 1
if (printing == TRUE)
{
print(paste(paste("Correcting apparent methylation levels:", round(counter / (n_AMP * n_CpG) * 100, 1), sep = " "), "%", sep = ""))
}
}
}
}
print("Correcting apparent methylation levels DONE")
cat(rep("\n", 1))
title_name = paste(levels(droplevels(data$Target[1])), "MethylCal", sep = " - ")
a = lattice::xyplot(c(0, 100) ~ c(0, 100), type = "l", lty = 6, lwd = 2, col = "grey", strip = lattice::strip.custom(bg = "white"), data = data,
scales = list(cex = cex_par, x = list(at = unique(data$x), limits = c(-5, 105), rot = 45), y = list(at = AMP, limits = c(-5, 105))),
xlab = list(cex = cex_par, label = "% Actual methylation"), ylab = list(cex = cex_par, label = "% Apparent methylation after PCR"), main = title_name)
b = lattice::xyplot(y ~ x, groups = factor(CpG_group), type = "l", lty = 2, lwd = 2, col = "black", strip = lattice::strip.custom(bg = "white"), data = data)
c = lattice::xyplot(predict_MethylCal ~ x_pred_plot, groups = factor(CpG_group), type = "l", lty = 2, lwd = 2, col = "red", strip = lattice::strip.custom(bg = "white"))
d = lattice::xyplot(y ~ x, groups = factor(CpG_group), type = "p", pch = 21, lwd = 1.5, cex = 1.05, fill = "white", col = "black", strip = lattice::strip.custom(bg = "white"), data = data)
p = a + latticeExtra::as.layer(c) + latticeExtra::as.layer(d)
if (Sys_info[[1]] == "Windows")
{
grDevices::dev.new()
print(p)
} else {
name_fig = paste(paste(dir, "/", "MethylCal[CalibrationPlot_", levels(droplevels(data$Target[1])), "_Fig1", sep = ""), "pdf", sep = ".")
grDevices::pdf(file = name_fig)
print(p)
grDevices::dev.off()
}
a = lattice::xyplot(x ~ CpG_group | factor(AMP_group_label, levels = AMP_level), type = "l", lty = 6, lwd = 2, col = "grey", strip = lattice::strip.custom(bg = "white", par.strip.text = list(cex = .70)), data = data,
scales = list(cex = cex_par, x = list(tick.number = n_CpG_plot), y = list(at = unique(data$x), limits = c(-5, 105))), layout = c(n_AMP, 1),
xlab = list(cex = cex_par, label = "CpG"), ylab = list(cex = cex_par, label = "% Apparent methylation after PCR"), main = title_name)
b = lattice::xyplot(y ~ CpG_group | factor(AMP_group_label, levels = AMP_level), type = "l", lty = 2, lwd = 2, col = "black", strip = lattice::strip.custom(bg = "white"), data = data)
c = lattice::xyplot(y ~ CpG_group | factor(AMP_group_label, levels = AMP_level), type = "p", pch = 21, lwd = 1.5, cex = 0.85, fill = "white", col = "black", strip = lattice::strip.custom(bg = "white"), data = data)
d = lattice::xyplot(fitted_MethylCal[, MethylCal_idx] ~ CpG_group | factor(AMP_group_label, levels = AMP_level), type = "l", lty = 2, lwd = 2, col = "red", strip = lattice::strip.custom(bg = "white"), data = data)
e = lattice::xyplot(predict_MethylCal_CI_low ~ CpG_group | factor(AMP_group_label, levels = AMP_level), type = "l", lty = 6, lwd = 2, col = "red", strip = lattice::strip.custom(bg = "white"), data = data)
f = lattice::xyplot(predict_MethylCal_CI_high ~ CpG_group | factor(AMP_group_label, levels = AMP_level), type = "l", lty = 6, lwd = 2, col = "red", strip = lattice::strip.custom(bg = "white"), data = data)
p = a + latticeExtra::as.layer(b) + latticeExtra::as.layer(c) + latticeExtra::as.layer(d) + latticeExtra::as.layer(e) + latticeExtra::as.layer(f)
if (Sys_info[[1]] == "Windows")
{
grDevices::dev.new()
print(p)
} else {
name_fig = paste(paste(dir, "/", "MethylCal[CalibrationPlot_", levels(droplevels(data$Target[1])), "_Fig1", sep = ""), "pdf", sep = ".")
grDevices::pdf(file = name_fig)
print(p)
grDevices::dev.off()
}
a = lattice::xyplot(c(0, 100) ~ c(0, 100), type = "l", lty = 6, lwd = 2, col = "grey", strip = lattice::strip.custom(bg = "white"), data = data,
scales = list(cex = cex_par, x = list(at = unique(data$x), limits = c(-5, 105), rot = 45), y = list(at = AMP, limits = c(-5, 105))),
xlab = list(cex = cex_par, label = "% Actual methylation"), ylab = list(cex = cex_par, label = "% Apparent methylation after PCR"), main = title_name)
b = lattice::xyplot(y_correct_MethylCal ~ x, groups = factor(CpG_group), type = "p", pch = 21, lwd = 1.5, cex = 1.05, fill = "white", col = "black", strip = lattice::strip.custom(bg = "white"), data = data)
p = a + latticeExtra::as.layer(b)
if (Sys_info[[1]] == "Windows")
{
grDevices::dev.new()
print(p)
} else {
name_fig = paste(paste(dir, "/", "MethylCal[CalibrationPlot_", levels(droplevels(data$Target[1])), "_Fig1", sep = ""), "pdf", sep = ".")
grDevices::pdf(file = name_fig)
print(p)
grDevices::dev.off()
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.