#' Over Representation analysis (ORA)
#'
#' ORA wrapper which splits the long res list into
#' combined, up-regulated, and down-regulated list of
#' genes. It then performs ORA using clusterProfiler
#'
#' @param res_object res object in long(ish) format
#' @param lfc_thresh lfc threshold absolute value
#'
#' @return data.frame of enriched pathways
#' @export
#'
#' @examples
enrich_wrapper <- function(res_object, lfc_thresh=0){
res_object2 <- res_object[abs(res_object$logFC) >= lfc_thresh,] %>%
dplyr::filter(., adj.P.Val < .05)
temp_reslist <- list(
combined=res_object2,
upreg=res_object2[res_object2$logFC > 0,],
downreg=res_object2[res_object2$logFC < 0,]
)
for(i in temp_reslist){
print( paste(lfc_thresh,paste0(dim(i), collapse = ' ')))
}
ol <- lapply(temp_reslist, function(temp_res){
temp_list <- list(
try(DOSE::enrichDGN(temp_res$entrezgene, readable = TRUE, pvalueCutoff = .1, qvalueCutoff = .1)),
try(DOSE::enrichDO(temp_res$entrezgene, readable = TRUE, pvalueCutoff = .1, qvalueCutoff = .1)),
try(ReactomePA::enrichPathway(temp_res$entrezgene,readable = TRUE, pvalueCutoff = .1, qvalueCutoff = .1 )),
try(clusterProfiler::enrichKEGG(temp_res$entrezgene, pvalueCutoff = .1, qvalueCutoff = .1))) %>% setNames(., c('DGN', 'DO','Reactome', 'KEGG' )) %>%
lapply(., data.frame)
}) %>% lapply(., function(x){
rbind_named_df_list(x, 'database')
})# %>%
#rbind_named_df_list(., 'regulation')
return(ol)
}
#### TODO Functions ####
#' Converts ensembl to entrez
#'
#' @param gene_vector vector of human ensembl genes
#'
#' @return data.frame of with ensembl gene and entrez gene ids
#' @keywords internal
#'
#' @examples
ensembl_to_entrez_genes <- function(gene_vector){
# if(!exists(mart)){
# mart <- biomaRt::useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
# }
atts <- c('ensembl_gene_id', 'entrezgene')
filts <- c('ensembl_gene_id')
entrez_genes <- biomaRt::getBM(atts, filts, gene_vector, mart)
return(entrez_genes)
}
#' Performs enrichment analysis accross all GO domains
#'
#' @param ent_genes vector of entrez genes
#'
#' @return pathway list by database
#' @keywords internal
#'
#'
#' @examples
enrich_go_wrapper <- function(ent_genes){
l <- list(enrichGO(ent_genes, ont = 'CC', readable=TRUE, OrgDb=org.Hs.eg.db), enrichGO(ent_genes, ont = 'MF', readable=TRUE, OrgDb=org.Hs.eg.db),enrichGO(ent_genes, ont = 'BP', readable=TRUE, OrgDb=org.Hs.eg.db))
# ent_genes <- bitr(gene_vector, 'SYMBOL', toType="ENTREZID", OrgDb="org.Hs.eg.db")$ENTREZID
dbs <- c( 'GO_CC', 'GO_MF', 'GO_BP')
names(l) <- dbs
l <- lapply(l, as.data.frame)
l <- do.call(rbind, l)
l$database <- limma::strsplit2(row.names(l), '\\.')[,1]
row.names(l) <- NULL
return(l)
}
#' Performs enrichment analysis using KEGG, REACTOME, DO, and DisGenNet
#'
#' @param ent_genes vector of entrez genes
#'
#' @return pathway list by database
#' @keywords internal
#'
#' @examples
enrich_pathway_wrapper <- function(ent_genes){
# ent_genes <- bitr(gene_vector, 'SYMBOL', toType="ENTREZID", OrgDb="org.Hs.eg.db")$ENTREZID
dbs <- c('KEGG', 'REACTOME', 'DO', 'DisGenNet')
# l <- list(enrichKEGG(ent_genes, pvalueCutoff = 1), enrichPathway(ent_genes, pvalueCutoff = 1), enrichDO(ent_genes), enrichDGN(ent_genes))
l <- list(clusterProfiler::enrichKEGG(ent_genes), ReactomePA::enrichPathway(ent_genes), DOSE::enrichDO(ent_genes), DOSE::enrichDGN(ent_genes))
names(l) <- dbs
l <- lapply(l, as.data.frame)
l <- do.call(rbind, l)
l$database <- limma::strsplit2(row.names(l), '\\.')[,1]
row.names(l) <- NULL
return(l)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.