R/MapTaxaObs.R

Defines functions MapTaxaObs

Documented in MapTaxaObs

#' Taxa Observation Maps
#'
#' Map taxonomic observations from a data frame.  Input a dataframe with SampID,
#' TaxaID, TaxaCount, Latitude, and Longitude. Other arguments are format (jpg
#' vs. pdf), file name prefix, and output directory. Files are saved with the
#' prefix "map.taxa." by default.
#'
#' The user will pass arguments for maps::map function that is used for the map.
#' For example, 'database' and 'regions'.  Without these arguments no map will
#' be created.
#'
#' The map will have all points and colored points for each taxon.
#' In addition the map will include the number of samples by taxon.
#'
#' The example data is fish but can be used for benthic macroinvertebrates as
#' well.
#'
#' If use grouping variable colors are from grDevices::rainbow()
#'
#' Jpg file names replace all non-alphanumeric characters with "_".
#'
#' The R package maps is required for this function.
#'
#' @param df_obs Observation data frame
#' @param SampID df_obs column name, Unique Sample identifier
#' @param TaxaID df_obs column name, Unique Taxa identifier
#' @param TaxaCount df_obs column name, Number of individuals for TaxonID and
#' SampID
#' @param Lat df_obs column name, Latitude
#' @param Long df_obs column name, Longitude
#' @param output_dir Directory to save output.  Default is working directory.
#' @param output_prefix Prefix to TaxaID for each file.  Default = "map.taxa."
#' @param output_type File format for output; jpg or pdf.
#' @param database maps::map function database; world, usa, state, county
#' @param regions maps::map function regions.  Names pertinent to map_db.
#' @param map_grp Map grouping variable from df_obs.  Will generate legend and
#' color code the points on the map.  Default = NULL
#' @param leg_loc Legend location text.  Default = "right"
#' Other values may not work properly.
#' @param ... Optional arguments to be passed to methods.
# @param map_xlim maps::map function xlim;
# @param map_ylim maps::map function ylim;
#'
#' @return Taxa maps to user defined directory as jpg or pdf.
#'
#' @examples
#' df_obs <- data_Taxa_MA
#' SampID <- "estuary"
#' TaxaID <- "TaxaName"
#' TaxaCount <- "Count"
#' Lat <- "Latitude"
#' Long <- "Longitude"
#' output_dir <- tempdir()
#' output_prefix <- "maps.taxa."
#' output_type <- "pdf"
#'
# map arguments
#' myDB <- "state"
#' myRegion <- "massachusetts"
#' myXlim     <- c(-(73+(30/60)), -(69+(56/60)))
#' myYlim     <- c((41+(14/60)),(42+(53/60)))
#'
#' # Run function with extra arguments for map
#'\dontrun{
#' MapTaxaObs(df_obs
#'            , SampID
#'            , TaxaID
#'            , TaxaCount
#'            , Lat
#'            , Long
#'            , database="state"
#'            , regions="massachusetts"
#'            , xlim = myXlim
#'            , ylim = myYlim
#'            , map_grp = "estuary"
#'            , leg_loc = "bottomleft")
#'}
#
#' @export
MapTaxaObs <- function(df_obs
                       , SampID
                       , TaxaID
                       , TaxaCount
                       , Lat
                       , Long
                       , output_dir = NULL
                       , output_prefix = "maps.taxa"
                       , output_type = "pdf"
                       , database
                       , regions
                       , map_grp = NULL
                       , leg_loc = "right"
                       , ...)
{##FUNCTION.MapTaxaObs.START

  # tibble to data frame
  df_obs <- as.data.frame(df_obs)

  # Munge
  Samps.ALL         <- unique(df_obs[,SampID])
  NumSamps.ALL     <- length(Samps.ALL)

  # reclass "Count" (ensure is numeric)
  df_obs[,TaxaCount] <- as.numeric(df_obs[, TaxaCount])
  Count.ALL        <- sum(df_obs[, TaxaCount], na.rm=TRUE)

  # Calc Density
  #df_obs[,"Pct"] <-

  TaxaNames <- unique(df_obs[,TaxaID])

  # Define Counters for the Loop
  data2process <- TaxaNames
  myCounterStart <- 0 #set at number of columns not used
  myCounterStop <- length(data2process)
  myCounter <- myCounterStart
  print(paste("Total files to process = "
              , myCounterStop - myCounterStart
              , sep = ""))
  utils::flush.console()

  if(is.null(output_dir)){
    dir_out <- file.path(getwd())
  } else {
    dir_out <- output_dir
  }## IF ~ output_dir ~ END

  #Define PDF
  if (output_type=="pdf") {##IF.output_type.START
    grDevices::pdf(file = file.path(dir_out
                                    , paste(output_prefix, "pdf", sep = "."))
                   , width = 10
                   , height = 7)
  }##IF.output_type.END


  while (myCounter < myCounterStop)
  { #LOOP.START
    # 1.0. Increase the Counter
    myCounter <- myCounter+1
    #
    # define Target Taxa for this iteration of the loop
    myTargetMapCat <- data2process[myCounter]
    # Update User
    print(paste("Map "
                , myCounter
                , " of "
                , myCounterStop
                , "; "
                , myTargetMapCat
                , sep = ""))
    utils::flush.console()

    # # subset
    #data.TargetMapCat <- subset(df_obs, TaxaID == myTargetMapCat)
    data.TargetMapCat <- df_obs[df_obs[, TaxaID] == myTargetMapCat, ]

    #
    # should be % occ in sample but use max as a surrogate
    #  (easier to see the dots)
    myDenom <- max(data.TargetMapCat[, TaxaCount])

    # jpg
    if (output_type=="jpg") {##IF.output_type.START
      grDevices::jpeg(filename = file.path(dir_out
                                           , paste(output_prefix
                                      , gsub("[[:punct:]]", "_", myTargetMapCat)
                                                   , "jpg"
                                                   , sep = "."))
                      , width = 1024
                      , height = 768
                      , quality = 100
                      , pointsize = 20)
    }##IF.output_type.END

    #~~~~~~~~~~~~~~~~~
    # Generate Base Map #####
    #~~~~~~~~~~~~~~~~~
    # use method 1 or 2
    #
    # Map.1. Default R outlines
    #map('state',region=State)#,) border=0.1)
    maps::map(database, regions)
  #  map(database=myDB, regions=myRegion)

    # Map Points
    #~~~~~~~~~~~~~~~~~
    # point size
    # PctCount (use this to have size between maps be relative)
#    myCEX.PctSample <- data.TargetMapCat[,myPctCount]
    # Pct of max Count for the target organism (ensures one point will be cex=1)
#    myCEX.PctTarget <- data.TargetMapCat[,TaxaCount]/myDenom
    #
    myCEX <- 1 #myCEX.PctTarget
    #
    # map all sites (as gray, open circle)
    graphics::points(df_obs[, Long]
                     , df_obs[, Lat]
                     , col = "lightgray"
                     , pch = 1
                     , cex = 1)
    #
    # Points ----
    myPCH <- 19

    if(is.null(map_grp)){
      # Legend = FALSE
      graphics::points(data.TargetMapCat[, Long]
                       , data.TargetMapCat[, Lat]
                       , col = "blue"
                       , pch = myPCH
                       , cex = myCEX)
    } else {
      # Legend = TRUE
      leg_cat <- unique(data.TargetMapCat[, map_grp])
      n_leg_cat <- length(leg_cat)
      leg_col <- grDevices::rainbow(n_leg_cat)
      #leg_col <- RColorBrewer::brewer.pal(n_leg_cat, "Set3")
      for(a in seq_len(n_leg_cat)){
        pts_leg <- data.TargetMapCat[data.TargetMapCat[, map_grp] == leg_cat[a], ]
        graphics::points(pts_leg[, Long]
                         , pts_leg[, Lat]
                         , col = leg_col[a]
                         , pch = myPCH
                         , cex = myCEX)
      }## FOR ~ a ~ END
      graphics::legend(leg_loc
             , legend = leg_cat
             , col = leg_col
             , pch = myPCH
             , xpd = TRUE
             , inset = c(-0.75, 0))
    }## IF ~ legend ~ END


    # main
    #graphics::mtext(paste(data2process[myCounter]," = ",myTargetMapCat,sep=""))
    graphics::mtext(myTargetMapCat)
    # 20130923, Target samples and count (lower left, side=1,outer=T,adj=0)
    # Pct Count, top line (line=-2)
    (Count.Target <- sum(data.TargetMapCat[, TaxaCount]))
    (Pct.Count <- round(Count.Target / Count.ALL ,2))
  #  graphics::mtext(paste("Pct of Total Count (n=",Count.Target,")= "
    # ,Pct.Count,sep=""), side=1,outer=TRUE,adj=0,line=-2,cex=0.75)
    # Pct Samps, bottom line (line=-1)
    Samps.Target <- unique(data.TargetMapCat[,SampID])
    (NumSamps.Target <- length(Samps.Target))
    (Pct.Samps <- round(NumSamps.Target / NumSamps.ALL * 100, 1))
    graphics::mtext(paste("Pct of Total Samples (n="
                          , NumSamps.ALL,") = "
                          , Pct.Samps
                          , "%"
                          , sep = "")
                    , side = 1
                    , outer = TRUE
                    , adj = 0
                    , line = -1
                    , cex = 0.75)
    # number of samples
    graphics::mtext(paste("n=", NumSamps.Target, sep = ""), side = 1)
    #

    if (output_type=="jpg") {##IF.output_type.START
      grDevices::dev.off() ##JPEG.END
    }##IF.output_type.END

    #
    # 1.6. Display progress to user (needs flush.console or only writes at end)
    # print(paste("Finished file ",myCounter-myCounterStart," of "
    #  ,myCounterStop-myCounterStart,", ",data2process[myCounter],".",sep=""))
    # utils::flush.console()
    #
    # 1.7. Some clean up
    #rm(data.TargetMapCat)
    #par(def.par)


  } #LOOP.END
  #
  # Close Device
  if (output_type == "pdf") {##IF.output_type.START
    grDevices::dev.off() ##PDF.END
  }##IF.output_type.END
  #
  print(paste("Processing of "
              , myCounter - myCounterStart
              , " of "
              , myCounterStop  -myCounterStart
              , " files complete."
              , sep = ""))
  utils::flush.console()
  #data2process[myCounter] #use for troubleshooting if get error


  #
}##FUNCTION.MapTaxaObs.END
leppott/BioMonTools documentation built on March 1, 2025, 7:18 a.m.