Description Usage Arguments Value Author(s) References See Also
Function to perform one repetition of cNMTF
1 2 3 |
R |
Data matrix, n x m |
HLH |
Term in the correction for population structures. Dot product: H . L . H where: H is the Centering matrix (m x m) and L is Ancestry matrix (i.e. Kernel on the confounder random variable) (m x m) |
Vo |
Phenotype/Outcome label matrix, m x k2 |
Wu |
Adjacency matrix of the SNV-SNV network. n x n |
k |
Vector of rank parameters, k1 x k2 |
iters |
Default number of itersatiors |
calcObj |
Check convergency each X number of itersations |
displ |
Logical. Print number of iterations |
tof |
RelativeError |
lparameters |
Vector of regularization parameters: γ_{1}, γ_{2}, γ_{3} for the SNV-SNV network, the Phenotype matrix and the Ancestry Kernel respectively. |
init |
Initialize the matrices randomly (0) or by using PSVD (1) |
DWD |
Term in the normalised graph laplacian. Dot product: 1/sqrt(Du) . Wu . 1/sqrt(Du), where: Du is the Degree matrix and Wu is the adjacency matrix of the SNV-SNV network. |
U
low-dimensional cluster indicator matrix for features observed data, n x k1
V
low-dimensional cluster indicator matrix for observed data, m x k2
S
cluster mapping matrix, k1 x k2
num.iters
number of itersation till convergence
final.J
Final objective function value
objF.vector
Objective function values across iterations
Luis G. Leal, lgl15@imperial.ac.uk
Shang, Fanha, et al. "Graph dual regularization non-negative matrix factorization for co-clustering" Pattern Recognition 45 (2012)
Li, Rakitisch, et al. "ccSVM: correcting SVMs for confounding factors in biological data classification" ISMB 2011
Other Factorisation functions: clus.membership
,
consensus.clust
,
hierarchical.clust
,
initialise.UV
, neg.constrain
,
parameters.cnmtf
,
plot.parameter
,
pos.constrain
, psvd.init
,
regression.snps
, score.cnmtf
,
synthetic.gwas
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.