cnmtf: cNMTF algorithm

Description Usage Arguments Value Author(s) References See Also

View source: R/fact_clust.R

Description

Function to perform one repetition of cNMTF

Usage

1
2
3
cnmtf(R, HLH, Vo, Wu, k, iters = 1, calcObj, calcObj2, displ = TRUE,
  tof = 1e-05, lparameters, init = 1, V.init = NULL, U.init = NULL,
  init.S = FALSE, DWD = NULL)

Arguments

R

Data matrix, n x m

HLH

Term in the correction for population structures. Dot product: H . L . H where: H is the Centering matrix (m x m) and L is Ancestry matrix (i.e. Kernel on the confounder random variable) (m x m)

Vo

Phenotype/Outcome label matrix, m x k2

Wu

Adjacency matrix of the SNV-SNV network. n x n

k

Vector of rank parameters, k1 x k2

iters

Default number of itersatiors

calcObj

Check convergency each X number of itersations

displ

Logical. Print number of iterations

tof

RelativeError

lparameters

Vector of regularization parameters: γ_{1}, γ_{2}, γ_{3} for the SNV-SNV network, the Phenotype matrix and the Ancestry Kernel respectively.

init

Initialize the matrices randomly (0) or by using PSVD (1)

DWD

Term in the normalised graph laplacian. Dot product: 1/sqrt(Du) . Wu . 1/sqrt(Du), where: Du is the Degree matrix and Wu is the adjacency matrix of the SNV-SNV network.

Value

Author(s)

Luis G. Leal, lgl15@imperial.ac.uk

References

See Also

Other Factorisation functions: clus.membership, consensus.clust, hierarchical.clust, initialise.UV, neg.constrain, parameters.cnmtf, plot.parameter, pos.constrain, psvd.init, regression.snps, score.cnmtf, synthetic.gwas


lgl15/cnmtf documentation built on May 28, 2019, 6:33 p.m.