score.cnmtf: Calculate Omega matrix

Description Usage Arguments Value Author(s) See Also

View source: R/fact_main.R

Description

Function to calculate the Omega matrix (SNV scores per cluster of patients)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
score.cnmtf(R, out = NULL, pop = NULL, log.file = NULL, name.exp = NULL,
  name.init = NULL, work.dat = NULL, define.k = c("user", "NMTF", "PCA"),
  k1 = NULL, k2 = NULL, estimate.par = TRUE, wparameters = NULL,
  save.parameters = TRUE, run.t.exp = NULL, run.t.par = 4,
  range.parameters = NULL, sequential.estimation = FALSE, max.try0 = 4,
  tao.sc = 4, snps.known = NULL, calcObj = NULL, calcObj2 = NULL,
  init = NULL, parallel.opt = FALSE, n.cores = 2, iters = NULL,
  do.U = FALSE, display.iters = TRUE, score.pvalues = c(TRUE, FALSE,
  "only"), randomisations = 50, random.parallel = FALSE,
  file.Gu = file.Gu, norm.Lu = FALSE)

Arguments

R

Relationship matrix

out

Categorical outcome variable

pop

Population variable

log.file

Log file to track progress of the function

name.exp

Name of experiment to save files

name.init

Name of workspace with initialisations of U and V

work.dat

Folder to save and load workspaces

define.k

Method to define k1. It can be: c("user","method","PCA")

k1

Number of SNV clusters

k2

Number of patient clusters equals number of levels in the outcome

estimate.par

Logical. Estimate penalisation parameters. If FALSE then provide the parameters in the argument "wparameters". If TRUE then provide preliminar weights to the parameters in the argument "wparameters".

wparameters

Either the Penalization parameters (if estimate.par == FALSE) or Weights of penalisation terms to be computed (if estimate.par == TRUE)

save.parameters

Logical. Save parameters to file

run.t.exp

Number of repetitions for the experiment

run.t.par

Number of repetitions for parameters fitting

range.parameters

Range of parameters to be evaluated (if estimate.par == FALSE)

sequential.estimation

Set the parameters in a specific order and carry the optimals

max.try0

Maximum number of tries to fit the parameter

tao.sc

Trehsold of standard deviations for the SNV score

snps.known

List of known associations

calcObj, calcObj2

Number of iterations to check convergency. Check convergency each calcObj number of iterations after first calcObj2 iterations

init

Type of seeding/initialisation of matrices in the algorithm

parallel.opt

Run some instances of the algorithm in parallel

n.cores

Number of cores to use in the parallel processing

iters

Number of iterations

do.U

Perform clustering of SNPs

display.iters

Display the iterations of function cnmtf

score.pvalues

Estimate p-values for the scores c(TRUE, FALSE, "only").

randomisations

Number of randomisations

random.parallel

Logical. Run the radomisations in parallel

file.Gu

Workspace with adjancency matrix for the SNV-SNV network.

Value

The function internally generates:

The function prints the following objects in workspaces:

Author(s)

Luis G. Leal, lgl15@imperial.ac.uk

See Also

Other Factorisation functions: clus.membership, cnmtf, consensus.clust, hierarchical.clust, initialise.UV, neg.constrain, parameters.cnmtf, plot.parameter, pos.constrain, psvd.init, regression.snps, synthetic.gwas


lgl15/cnmtf documentation built on May 28, 2019, 6:33 p.m.