Description Usage Arguments Value Author(s) See Also
Function to calculate the Omega matrix (SNV scores per cluster of patients)
1 2 3 4 5 6 7 8 9 10 | score.cnmtf(R, out = NULL, pop = NULL, log.file = NULL, name.exp = NULL,
name.init = NULL, work.dat = NULL, define.k = c("user", "NMTF", "PCA"),
k1 = NULL, k2 = NULL, estimate.par = TRUE, wparameters = NULL,
save.parameters = TRUE, run.t.exp = NULL, run.t.par = 4,
range.parameters = NULL, sequential.estimation = FALSE, max.try0 = 4,
tao.sc = 4, snps.known = NULL, calcObj = NULL, calcObj2 = NULL,
init = NULL, parallel.opt = FALSE, n.cores = 2, iters = NULL,
do.U = FALSE, display.iters = TRUE, score.pvalues = c(TRUE, FALSE,
"only"), randomisations = 50, random.parallel = FALSE,
file.Gu = file.Gu, norm.Lu = FALSE)
|
R |
Relationship matrix |
out |
Categorical outcome variable |
pop |
Population variable |
log.file |
Log file to track progress of the function |
name.exp |
Name of experiment to save files |
name.init |
Name of workspace with initialisations of U and V |
work.dat |
Folder to save and load workspaces |
define.k |
Method to define |
k1 |
Number of SNV clusters |
k2 |
Number of patient clusters equals number of levels in the outcome |
estimate.par |
Logical. Estimate penalisation parameters. If FALSE then provide the parameters in the argument "wparameters". If TRUE then provide preliminar weights to the parameters in the argument "wparameters". |
wparameters |
Either the Penalization parameters (if |
save.parameters |
Logical. Save parameters to file |
run.t.exp |
Number of repetitions for the experiment |
run.t.par |
Number of repetitions for parameters fitting |
range.parameters |
Range of parameters to be evaluated (if |
sequential.estimation |
Set the parameters in a specific order and carry the optimals |
max.try0 |
Maximum number of tries to fit the parameter |
tao.sc |
Trehsold of standard deviations for the SNV score |
snps.known |
List of known associations |
calcObj, calcObj2 |
Number of iterations to check convergency. Check convergency each |
init |
Type of seeding/initialisation of matrices in the algorithm |
parallel.opt |
Run some instances of the algorithm in parallel |
n.cores |
Number of cores to use in the parallel processing |
iters |
Number of iterations |
do.U |
Perform clustering of SNPs |
display.iters |
Display the iterations of function cnmtf |
score.pvalues |
Estimate p-values for the scores |
randomisations |
Number of randomisations |
random.parallel |
Logical. Run the radomisations in parallel |
file.Gu |
Workspace with adjancency matrix for the SNV-SNV network. |
The function internally generates:
Estimation of number of SNP clusters (k1)
Estimation of penalisation parameters (gamma1, gamma3, gamma2)
The function prints the following objects in workspaces:
Initialisation of matrices U.init and V.init
res.cnmtf
: results of factorisations
lcnmtf.ran
: results of algorithm applied on randomisations of R
Luis G. Leal, lgl15@imperial.ac.uk
Other Factorisation functions: clus.membership
,
cnmtf
, consensus.clust
,
hierarchical.clust
,
initialise.UV
, neg.constrain
,
parameters.cnmtf
,
plot.parameter
,
pos.constrain
, psvd.init
,
regression.snps
,
synthetic.gwas
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.