Description Usage Arguments Value Author(s) References See Also
Function to create synthetic GWAS data sets
1 2 3 4 |
n.snps |
number of SNPs in the synthetic dataset |
n.pats |
number of patients in the synthetic dataset |
n.pops |
number of patient populations in the synthetic dataset |
p.pops |
proportion of patients in each population |
c.pops |
proportion of cases in each patient population |
fst |
Factor of differentiation between populations if |
allele.freq.model |
define the model to generate the allele frequency |
pl.pop |
vector of fitted allele frequencies in each population if |
prefix.snp |
prefix to name the SNP columns |
r |
risk factor vector ( i.e., genotype relative risks) to generate the genotypes for cases/controls in each population |
pcases |
proportion of cases |
db.g
synthetic GWAS data set
status
disease status of the patient
pop
population ancestry of the patient
snp.risk
genotype relative risk for each SNP
Luis G. Leal, lgl15@imperial.ac.uk
Mingyao Li, et al. (2010) "Correcting population stratification in GWAS using a phylogenetic approach" Bioinformatics
Alkes Price, et al. (2006) "Principal components analysis corrects for stratification in genome-wide association studies" Nature genetics
Other Factorisation functions: clus.membership
,
cnmtf
, consensus.clust
,
hierarchical.clust
,
initialise.UV
, neg.constrain
,
parameters.cnmtf
,
plot.parameter
,
pos.constrain
, psvd.init
,
regression.snps
, score.cnmtf
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.