synthetic.gwas: Simulate synthetic genotypes

Description Usage Arguments Value Author(s) References See Also

View source: R/prep_syn.R

Description

Function to create synthetic GWAS data sets

Usage

1
2
3
4
synthetic.gwas(n.snps = 10, n.pats = 100, n.pops = 3, p.pops = c(0.25,
  0.25, 0.5), c.pops = c(0.2, 0.2, 0.2), r.pops = c(1.5, 1, 1.5),
  fst = 0.01, allele.freq.model = c("Balding-Nichols", "fitted"),
  pl.pop = c(0.1, 0.1, 0.9), prefix.snp = "snp")

Arguments

n.snps

number of SNPs in the synthetic dataset

n.pats

number of patients in the synthetic dataset

n.pops

number of patient populations in the synthetic dataset

p.pops

proportion of patients in each population

c.pops

proportion of cases in each patient population

fst

Factor of differentiation between populations if allele.freq.model == "Balding-Nichols" .

allele.freq.model

define the model to generate the allele frequency c("Balding-Nichols","fitted") .

pl.pop

vector of fitted allele frequencies in each population if allele.freq.model == "fitted" .

prefix.snp

prefix to name the SNP columns

r

risk factor vector ( i.e., genotype relative risks) to generate the genotypes for cases/controls in each population

pcases

proportion of cases

Value

Author(s)

Luis G. Leal, lgl15@imperial.ac.uk

References

See Also

Other Factorisation functions: clus.membership, cnmtf, consensus.clust, hierarchical.clust, initialise.UV, neg.constrain, parameters.cnmtf, plot.parameter, pos.constrain, psvd.init, regression.snps, score.cnmtf


lgl15/cnmtf documentation built on May 28, 2019, 6:33 p.m.