context("Test Seurat helpers")
## create_SeuratDim is correct
test_that("create_SeuratDim works", {
# load("tests/assets/test_data3.RData")
load("../assets/test_data3.RData")
mat_1 <- test_data$mat_1
mat_2 <- test_data$mat_2
n <- nrow(mat_1)
large_clustering_1 <- test_data$clustering_1
large_clustering_2 <- test_data$clustering_2
multiSVD_obj <- create_multiSVD(mat_1 = mat_1, mat_2 = mat_2,
dims_1 = 1:2, dims_2 = 1:2,
center_1 = F, center_2 = F,
normalize_row = T,
normalize_singular_value = T,
recenter_1 = F, recenter_2 = F,
rescale_1 = F, rescale_2 = F,
scale_1 = F, scale_2 = F)
multiSVD_obj <- form_metacells(input_obj = multiSVD_obj,
large_clustering_1 = large_clustering_1,
large_clustering_2 = large_clustering_2,
num_metacells = NULL)
multiSVD_obj <- compute_snns(input_obj = multiSVD_obj,
latent_k = 2,
num_neigh = 10,
bool_cosine = T,
bool_intersect = T,
min_deg = 1)
multiSVD_obj <- tiltedCCA(input_obj = multiSVD_obj)
multiSVD_obj <- tiltedCCA_decomposition(input_obj = multiSVD_obj)
res <- create_SeuratDim(input_obj = multiSVD_obj,
what = "common",
aligned_umap_assay = NULL,
seurat_obj = NULL)
expect_true(inherits(res, "DimReduc"))
expect_true(all(dim(res@cell.embeddings) == c(300,2)))
expect_true(length(rownames(res@cell.embeddings)) > 0 & all(rownames(res@cell.embeddings) == rownames(mat_1)))
res <- create_SeuratDim(input_obj = multiSVD_obj,
what = "distinct_1",
aligned_umap_assay = NULL,
seurat_obj = NULL)
expect_true(inherits(res, "DimReduc"))
expect_true(all(dim(res@cell.embeddings) == c(300,2)))
expect_true(length(rownames(res@cell.embeddings)) > 0 & all(rownames(res@cell.embeddings) == rownames(mat_1)))
res <- create_SeuratDim(input_obj = multiSVD_obj,
what = "distinct_2",
aligned_umap_assay = NULL,
seurat_obj = NULL)
expect_true(inherits(res, "DimReduc"))
expect_true(all(dim(res@cell.embeddings) == c(300,2)))
expect_true(length(rownames(res@cell.embeddings)) > 0 & all(rownames(res@cell.embeddings) == rownames(mat_1)))
})
test_that("create_SeuratDim works with Seurat objects", {
# load("tests/assets/test_data3.RData")
load("../assets/test_data3.RData")
mat_1 <- test_data$mat_1
mat_2 <- test_data$mat_2
n <- nrow(mat_1)
large_clustering_1 <- test_data$clustering_1
large_clustering_2 <- test_data$clustering_2
multiSVD_obj <- create_multiSVD(mat_1 = mat_1, mat_2 = mat_2,
dims_1 = 1:2, dims_2 = 1:2,
center_1 = F, center_2 = F,
normalize_row = T,
normalize_singular_value = T,
recenter_1 = F, recenter_2 = F,
rescale_1 = F, rescale_2 = F,
scale_1 = F, scale_2 = F)
multiSVD_obj <- form_metacells(input_obj = multiSVD_obj,
large_clustering_1 = large_clustering_1,
large_clustering_2 = large_clustering_2,
num_metacells = NULL)
multiSVD_obj <- compute_snns(input_obj = multiSVD_obj,
latent_k = 2,
num_neigh = 10,
bool_cosine = T,
bool_intersect = T,
min_deg = 1)
multiSVD_obj <- tiltedCCA(input_obj = multiSVD_obj)
multiSVD_obj <- tiltedCCA_decomposition(input_obj = multiSVD_obj)
suppressWarnings(seurat_obj <- Seurat::CreateSeuratObject(counts = t(mat_1)))
suppressWarnings(seurat_obj[["umap"]] <- Seurat::RunUMAP(.get_Dimred(multiSVD_obj),
assay = "RNA",
verbose = F))
res <- create_SeuratDim(input_obj = multiSVD_obj,
what = "common",
aligned_umap_assay = "umap",
seurat_obj = seurat_obj)
expect_true(inherits(res, "DimReduc"))
expect_true(all(dim(res@cell.embeddings) == c(300,2)))
expect_true(length(rownames(res@cell.embeddings)) > 0 & all(rownames(res@cell.embeddings) == rownames(mat_1)))
})
######################
## .translate_celltype is correct
test_that(".translate_celltype works", {
# load("tests/assets/test_data3.RData")
load("../assets/test_data3.RData")
mat_1 <- test_data$mat_1
mat_2 <- test_data$mat_2
n <- nrow(mat_1)
large_clustering_1 <- test_data$clustering_1
large_clustering_2 <- test_data$clustering_2
multiSVD_obj <- create_multiSVD(mat_1 = mat_1, mat_2 = mat_2,
dims_1 = 1:2, dims_2 = 1:2,
center_1 = F, center_2 = F,
normalize_row = T,
normalize_singular_value = T,
recenter_1 = F, recenter_2 = F,
rescale_1 = F, rescale_2 = F,
scale_1 = F, scale_2 = F)
multiSVD_obj <- form_metacells(input_obj = multiSVD_obj,
large_clustering_1 = large_clustering_1,
large_clustering_2 = large_clustering_2,
num_metacells = 100)
multiSVD_obj <- compute_snns(input_obj = multiSVD_obj,
latent_k = 2,
num_neigh = 10,
bool_cosine = T,
bool_intersect = T,
min_deg = 1)
suppressWarnings(seurat_obj <- Seurat::CreateSeuratObject(counts = t(mat_1)))
seurat_obj$celltype <- large_clustering_1
metacell_list <- .get_metacell(input_obj = multiSVD_obj,
resolution = "cell",
type = "list",
what = "metacell_clustering")
expect_true(all(names(metacell_list) == rownames(.get_SNN(multiSVD_obj,
bool_common = F))))
res <- .translate_celltype(input_obj = multiSVD_obj,
celltype_vec = seurat_obj$celltype,
metacell_list = metacell_list)
expect_true(length(res) == length(metacell_list))
expect_true(is.factor(res))
expect_true(all(sort(levels(res)) == sort(levels(large_clustering_1))))
})
test_that(".translate_celltype works with NULL metacell_list", {
# load("tests/assets/test_data3.RData")
load("../assets/test_data3.RData")
mat_1 <- test_data$mat_1
mat_2 <- test_data$mat_2
n <- nrow(mat_1)
large_clustering_1 <- test_data$clustering_1
large_clustering_2 <- test_data$clustering_2
multiSVD_obj <- create_multiSVD(mat_1 = mat_1, mat_2 = mat_2,
dims_1 = 1:2, dims_2 = 1:2,
center_1 = F, center_2 = F,
normalize_row = T,
normalize_singular_value = T,
recenter_1 = F, recenter_2 = F,
rescale_1 = F, rescale_2 = F,
scale_1 = F, scale_2 = F)
multiSVD_obj <- form_metacells(input_obj = multiSVD_obj,
large_clustering_1 = large_clustering_1,
large_clustering_2 = large_clustering_2,
num_metacells = NULL)
suppressWarnings(seurat_obj <- Seurat::CreateSeuratObject(counts = t(mat_1)))
seurat_obj$celltype <- large_clustering_1
metacell_list <- .get_metacell(input_obj = multiSVD_obj,
resolution = "cell",
type = "list",
what = "metacell_clustering")
res <- .translate_celltype(input_obj = multiSVD_obj,
celltype_vec = seurat_obj$celltype,
metacell_list = metacell_list)
expect_true(all(res == seurat_obj$celltype))
expect_true(is.factor(res))
})
##########################
## create_reducedSeuratObj is correct
test_that("create_reducedSeuratObj works", {
# load("tests/assets/test_data3.RData")
load("../assets/test_data3.RData")
mat_1 <- test_data$mat_1
mat_2 <- test_data$mat_2
n <- nrow(mat_1)
large_clustering_1 <- test_data$clustering_1
large_clustering_2 <- test_data$clustering_2
multiSVD_obj <- create_multiSVD(mat_1 = mat_1, mat_2 = mat_2,
dims_1 = 1:2, dims_2 = 1:2,
center_1 = F, center_2 = F,
normalize_row = T,
normalize_singular_value = F,
recenter_1 = F, recenter_2 = F,
rescale_1 = F, rescale_2 = F,
scale_1 = F, scale_2 = F)
multiSVD_obj <- form_metacells(input_obj = multiSVD_obj,
large_clustering_1 = large_clustering_1,
large_clustering_2 = large_clustering_2,
num_metacells = 100)
multiSVD_obj <- compute_snns(input_obj = multiSVD_obj,
latent_k = 2,
num_neigh = 10,
bool_cosine = T,
bool_intersect = T,
min_deg = 1)
multiSVD_obj <- tiltedCCA(input_obj = multiSVD_obj)
multiSVD_obj <- tiltedCCA_decomposition(input_obj = multiSVD_obj)
suppressWarnings(seurat_obj <- Seurat::CreateSeuratObject(counts = t(mat_1)))
seurat_obj[["umap"]] <- Seurat::RunUMAP(.get_Dimred(multiSVD_obj),
assay = "RNA",
verbose = F)
seurat_obj$celltype <- large_clustering_1
res <- create_reducedSeuratObj(input_obj = multiSVD_obj,
what = "laplacian_1",
aligned_umap_assay = "umap",
seurat_celltype = "celltype",
seurat_obj = seurat_obj)
expect_true(inherits(res, "Seurat"))
expect_true(inherits(res[["umap"]], "DimReduc"))
expect_true(all(dim(res[["umap"]]@cell.embeddings) == c(100,2)))
})
test_that("create_reducedSeuratObj works with no metacells", {
# load("tests/assets/test_data3.RData")
load("../assets/test_data3.RData")
mat_1 <- test_data$mat_1
mat_2 <- test_data$mat_2
n <- nrow(mat_1)
large_clustering_1 <- test_data$clustering_1
large_clustering_2 <- test_data$clustering_2
multiSVD_obj <- create_multiSVD(mat_1 = mat_1, mat_2 = mat_2,
dims_1 = 1:2, dims_2 = 1:2,
center_1 = F, center_2 = F,
normalize_row = T,
normalize_singular_value = F,
recenter_1 = F, recenter_2 = F,
rescale_1 = F, rescale_2 = F,
scale_1 = F, scale_2 = F)
multiSVD_obj <- form_metacells(input_obj = multiSVD_obj,
large_clustering_1 = large_clustering_1,
large_clustering_2 = large_clustering_2,
num_metacells = NULL)
multiSVD_obj <- compute_snns(input_obj = multiSVD_obj,
latent_k = 2,
num_neigh = 10,
bool_cosine = T,
bool_intersect = T,
min_deg = 1)
multiSVD_obj <- tiltedCCA(input_obj = multiSVD_obj)
multiSVD_obj <- tiltedCCA_decomposition(input_obj = multiSVD_obj)
suppressWarnings(seurat_obj <- Seurat::CreateSeuratObject(counts = t(mat_1)))
seurat_obj[["umap"]] <- Seurat::RunUMAP(.get_Dimred(multiSVD_obj),
assay = "RNA",
verbose = F)
seurat_obj$celltype <- large_clustering_1
res <- create_reducedSeuratObj(input_obj = multiSVD_obj,
what = "laplacian_1",
aligned_umap_assay = "umap",
seurat_celltype = "celltype",
seurat_obj = seurat_obj)
expect_true(inherits(res, "Seurat"))
expect_true(inherits(res[["umap"]], "DimReduc"))
expect_true(all(dim(res[["umap"]]@cell.embeddings) == c(300,2)))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.