Description Usage Arguments Details Value Examples
find_cbf_modules uses Symmetrical Uncertainty as a correlation measure and the FCBF algorithm to
1 2 3 4 5 6 | find_cbf_modules(fc, n_genes = NULL, FCBF_threshold = 0.1,
verbose = TRUE, is_parallel = FALSE)
## S4 method for signature 'fcoex'
find_cbf_modules(fc, n_genes = NULL,
FCBF_threshold = 0.1, verbose = TRUE, is_parallel = FALSE)
|
fc |
A fcoex object containing a discretized expression table |
n_genes |
Sets the number of genes to be selected in the first part of the algorithm. If left unchanged, it defaults to NULL and the thresh parameter is used. Caution: it overrides the thresh parameter altogether. |
FCBF_threshold |
A threshold for the minimum correlation (as determined by symettrical uncertainty) between each variable and the class used for wrapped FCBF function. Defaults to 0.1. |
verbose |
Adds verbosity. Defaults to TRUE |
is_parallel |
Uses package parallel to paralleliza calculations. Defaults to FALSE. |
1 - Filter the gene list by correlations to a class (Step 1)
and
2 - Determine soft thresholds for coexpression to genes predominantly correlated to a class.
Returns a list with the CBF modules found or a adjacency matrix of the graph
1 2 3 4 5 6 7 | library(SingleCellExperiment)
data("mini_pbmc3k")
targets <- colData(mini_pbmc3k)$clusters
exprs <- as.data.frame(assay(mini_pbmc3k, "logcounts"))
fc <- new_fcoex(exprs, targets)
fc <- discretize(fc)
fc <- find_cbf_modules(fc)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.