find_cbf_modules: find_cbf_modules

Description Usage Arguments Details Value Examples

Description

find_cbf_modules uses Symmetrical Uncertainty as a correlation measure and the FCBF algorithm to

Usage

1
2
3
4
5
6
find_cbf_modules(fc, n_genes = NULL, FCBF_threshold = 0.1,
  verbose = TRUE, is_parallel = FALSE)

## S4 method for signature 'fcoex'
find_cbf_modules(fc, n_genes = NULL,
  FCBF_threshold = 0.1, verbose = TRUE, is_parallel = FALSE)

Arguments

fc

A fcoex object containing a discretized expression table

n_genes

Sets the number of genes to be selected in the first part of the algorithm. If left unchanged, it defaults to NULL and the thresh parameter is used. Caution: it overrides the thresh parameter altogether.

FCBF_threshold

A threshold for the minimum correlation (as determined by symettrical uncertainty) between each variable and the class used for wrapped FCBF function. Defaults to 0.1.

verbose

Adds verbosity. Defaults to TRUE

is_parallel

Uses package parallel to paralleliza calculations. Defaults to FALSE.

Details

1 - Filter the gene list by correlations to a class (Step 1)

and

2 - Determine soft thresholds for coexpression to genes predominantly correlated to a class.

Value

Returns a list with the CBF modules found or a adjacency matrix of the graph

Examples

1
2
3
4
5
6
7
library(SingleCellExperiment) 
data("mini_pbmc3k")
targets <- colData(mini_pbmc3k)$clusters
exprs <- as.data.frame(assay(mini_pbmc3k, "logcounts"))
fc <- new_fcoex(exprs, targets)
fc <- discretize(fc)
fc <- find_cbf_modules(fc)

lubianat/fcoex documentation built on Aug. 6, 2020, 3:39 a.m.