knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE, knitr.kable.NA = '')
library(dplyr) library(readr)
Gender: r params$gender
Sample prep: r params$sample_prep
knitr::include_graphics("genome_plot_conumee.png")
knitr::include_graphics(params$genome_plot)
cn_boundary <- params$cn_boundary df <- readr::read_delim(file = params$segment_table, delim = "\t") if (params$gender == "F") { df <- dplyr::filter(df, chrom != "chrY") } df %>% dplyr::mutate(segment_size = loc.end - loc.start + 1) %>% dplyr::filter((seg.mean.shifted < cn_boundary[1] & segment_size > cn_boundary[3]) | (seg.mean.shifted > cn_boundary[2] & segment_size > cn_boundary[4])) %>% dplyr::select(chrom, loc.start, loc.end, seg.mean.shifted, cytoband, detail_region) %>% dplyr::rename(Chr = chrom, Start = loc.start, End = loc.end, Mean = seg.mean.shifted, Cytoband = cytoband, Gene = detail_region) %>% dplyr::mutate(Gene = ifelse(is.na(Gene), "", Gene)) %>% knitr::kable()
Calls contain the following selected genes: CCND1, CDK4, CDK6, CDKN2A/B, EGFR, ERBB2, GLI2, MDM2, MET, MYC, MYCN, NF1, PTCH1, PTEN, RB1, TP53, PDGFRA, C19MC, NF2, CCND2, TERT, MDM4, BRAF, MYB, MYBL1, PPM1D, SMARCB1.
cn_boundary <- params$cn_boundary_focal df <- readr::read_delim(file = params$segment_table, delim = "\t") if (params$gender == "F") { df <- dplyr::filter(df, chrom != "chrY") } df %>% dplyr::filter(!is.na(detail_region)) %>% dplyr::mutate(segment_size = loc.end - loc.start + 1) %>% dplyr::filter((seg.mean.shifted < cn_boundary[1] & segment_size > cn_boundary[3]) | (seg.mean.shifted > cn_boundary[2] & segment_size > cn_boundary[4])) %>% dplyr::select(chrom, loc.start, loc.end, seg.mean.shifted, cytoband, detail_region) %>% dplyr::rename(Chr = chrom, Start = loc.start, End = loc.end, Mean = seg.mean.shifted, Cytoband = cytoband, Gene = detail_region) %>% knitr::kable()
A detection p-value is returned for every genomic position in every sample. Small p-values indicate a good position. Positions with non-significant p-values (typically >0.01) should not be trusted.
The m+u method compares the total DNA signal (Methylated + Unmethylated) for each position to the background signal level. The background is estimated using negative control positions, assuming a normal distribution. Calculations are performed on the original (non-log) scale. - from the manual page of
minfi::detectionP()
.
knitr::include_graphics("detection_p_mean.png")
A good sample will have a bimodal distribution with two peaks of beta values at 0 and 1, corresponding to methylation and unmethylation respectively.
knitr::include_graphics("qc_density_plot.png")
knitr::include_graphics("qc_density_bean.png")
knitr::include_graphics("qc_probes.png")
We have not decided how to interpret the plot in the context of QC.
knitr::include_graphics("mean_unmeth_mean.png")
The analysis is carried out R package yamatCN version r params$version
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.