R/gogarch-distributions.R

Defines functions .qfft.mn .qfft.num .qfft .pfft.mn .pfft.num .pfft .dfft.mn .dfft.num .dfft .cokurt.sigma .coskew.sigma .cokurt.ind .cokurt.pairs .coskew.ind .makeQNew .makeQc .setEqual .isEqual01 .isIn .isEqual .makePNew .makeQd .makePd .csimpsum .primefun .makeDNew .ghypfn ghypmvcf nigmvcf cfinv .wintpl .interval .intpol .intpolold

#################################################################################
##
##   R package rmgarch by Alexios Ghalanos Copyright (C) 2008-2013.
##   This file is part of the R package rmgarch.
##
##   The R package rmgarch is free software: you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   The R package rmgarch is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
#################################################################################


#------------------------------------------------------------------------------
# Convolution Algorithms
#------------------------------------------------------------------------------
.intpolold = function(x,y,z)
{
	# linear interp of z to f(x,y), needs min(x)< z < max(x)
	n = length(z)
	j = 1
	i = 1
	r = NULL
	while(i <= n)
	{
		flag = i
		while(flag == i)
		{
			if(z[i] >= x[j] && z[i] < x[j+1])
			{
				r = c( r, y[j+1] - (x[j+1] - z[i]) * (y[j+1] - y[j]) / (x[j+1] - x[j]) )
				i = i + 1
			} else {
				j = j + 1
			}
		}
	}
	return(r)
}

.intpol = function(x, y, z)
{
	n = length(z)
	ans = approx(x, y = y, xout = z, method = "linear", n = length(z),
			yleft = min(z), yright = max(z), rule = 1, f = 0, ties = mean)$y
	return(ans)
	
}

.interval = function(x, y)
{
	# find the x: min(x)<min(y) and max(x)> max(y)
	i1 = which(x < min(y))
	i2 = which(x > max(y))
	i = seq(i1[dim(as.matrix(i1))[2]], i2[1])
	j = i[1]
	while(x[j] > y[1]){ j = j - 1 }
	k = max(i)
	while(x[k] < max(y)){ k = k + 1 }	
	i = c(if(i[1] - 1 != 0) j:(i[1] - 1) else NULL, i, if((max(i) + 1) < k) (max(i) + 1):k else NULL)
	i = sort(unique(i))
	return(i)
}

.wintpl = function(x, y, z, w = NULL)
{
	# interpolate with a window of size w on z.
	if(is.null(w)) w = length(z)
	m = length(z)
	n = floor(m/w)
	r = NULL
	for(i in 1:n)
	{
		dz = z[((i - 1) * w + 1):(i * w)]
		k = .interval(x, dz)
		zt = approx(x = x[k], y = y[k], xout = dz, method = "linear", n = length(dz),
				yleft = min(dz), yright = max(dz), rule = 1, f = 0, ties = mean)$y
		r = c(r, zt)
	}
	if(m%%w != 0)
	{
		e = m %% w 
		g = (n * w + 1):(n * w + e)
		dz = z[g]
		k = .interval(x, dz)
		zt = approx(x = x[k], y = y[k], xout = dz, method = "linear", n = length(dz),
				yleft = min(dz), yright = max(dz), rule = 1, f = 0, ties = mean)$y
		#.intpol(x[k], y[k], dz)
		r = c(r, zt)
	}
	return(r)
}

cfinv = function(z, f, step = 0.01, ...)
{
	pmax = 18
	p = 14 
	maxz = round(max(abs(z))) + 5
	while((maxz/step+1) > 2^(p-1)) { p = p + 1 }
	if(p > pmax) p = pmax
	if((maxz/step+1) > 2^(p - 1)) { step = (maxz + 1) * (1 + step/10)/(2^(p - 1)) }
	zs = sort(z)
	# run the fft
	n = 2^p
	x = seq(0, n - 1, by = 1) * step - (n * step/2)
	s = 1/(step * n)
	tt = 2 * pi * s * (seq(0, n - 1, by = 1) - n/2)
	sgn = rep(1, n)
	ds = seq(2, n, by = 2)
	sgn[ds] = -1 * rep(1, n/2)
	cf = f(tt, ...)
	phi = sgn * cf
	phi[n/2 + 1] = sgn[n/2 + 1]
	#zplan = planFFT(length(phi))
	#p = s * abs(FFT(phi, plan = zplan))
	# 9-June-2014 remove FFTW since maintainers unable to fix mavericks problem
	p = s * abs(fft(phi))
	pdf = .wintpl(x, p, zs, w = NULL)
	return(pdf)
}

# characteristic function of nig with independent margins
nigmvcf = function(z, alpha, beta, delta, mu)
{
	N = length(z)
	m = length(mu)
	x1 = 1i * z * sum(mu)
	zx = matrix(0, ncol = m, nrow = N)
	zx = apply(cbind(delta, alpha, beta), 1, FUN = function(x) x[1]*(sqrt(x[2]^2 - x[3]^2) - sqrt(x[2]^2 - (x[3] + 1i * z)^2)))
	x2 = apply(t(zx), 2, FUN = function(x) sum(x))
	ans = x1 + x2
	return(exp(ans))
}

# we use the function BesselK of the Bessel package of Martin Maechler for evaluating
# complex inputs to the bessel functions.
ghypmvcf = function(z, lambda, alpha, beta, delta, mu)
{
	N = length(z)
	m = length(mu)
	x0 = 1i * z * sum(mu)
	zx = matrix(0, ncol = m, nrow = N)
	zx = apply(cbind(lambda, alpha, beta, delta), 1, FUN = function(x) .ghypfn(x[1], x[2], x[3], x[4], z))
	x = apply(t(zx), 2, FUN = function(x) sum(x))
	ans = exp(x0 + x)
	return(ans)
}

.ghypfn = function(lambda, alpha, beta, delta, z)
{
	x1 = (lambda/2)*(log(alpha^2 - beta^2) - log(alpha^2 - (beta+1i*z)^2) )
	x2 = log(BesselK(delta * sqrt(alpha^2 - (beta + 1i*z)^2), abs(lambda))) - log(BesselK(delta * sqrt(alpha^2 - beta^2), abs(lambda)))
	x1 + x2
}


##############################################################################

#------------------------------------------------------------------------------
# .makeDNew, .makePNew, .makeQNew from the distr package adapted here for
# the convolution algorithm
#------------------------------------------------------------------------------
.makeDNew <- function(x, dx, h = NULL, standM = "sum"){
	dx <- (dx >= .Machine$double.eps)*dx
	if( length(dx) < length(x) ) dx <- c(0,dx)
	if (is.null(h)) h <- 1
	dx1 <- dx / h
	mfun <- approxfun
	## density
	df1 <- mfun(x = x, y = dx1, yleft = 0, yright = 0)
	if (standM == "sum")
		stand <- sum(dx)
	else   {
		stand <- try(integrate(df1, -Inf, Inf)$value, TRUE)
		if (is(stand,"try-error")){
			warning("'integrate()' threw an error ---result may be inaccurate.")
			stand <- sum(df1(x))*h*(x[2]-x[1])
		}
	}
	dfun <- function(x, log = FALSE)
	{ if (log){
			d0<-log(df1(x))-log(stand)
		} else{
			d0 <- df1(x) / stand
		}
		return (d0)}
	
	rm(x,dx1,h)
	return(dfun)
}

.primefun <- function(f,x, nm = NULL){
	
	h <- diff(x)
	l <- length(x)
	
	xm <- (x[-l]+x[-1])/2
	
	fxm <- f(xm)
	fx <- f(x)
	
	
	fxs  <- 2 * cumsum(fx) - fx - fx[1]
	fxsm <- 4 * cumsum(fxm)
	
	fxx <- c(0, (fxs[-1]+fxsm)* h / 6 )
	
	if (is.null(nm)) nm <- fxx[l]
	
	fx1 <- approxfun(x, fxx, yright = nm, yleft = 0)
	
	ffx <- function(u){
		ffy <- fx1(u) 
		ffy[u > max(x)] <- nm 
		ffy[u < min(x)] <- 0
		return(ffy)
	}
	
	return(ffx)
}

.csimpsum <- function(fx){
	l <- length(fx)
	l2 <- l%/%2
	if (l%%2 == 0) {
		fx <- c(fx[1:l2],(fx[l2]+fx[l2+1])/2,fx[(l2+1):l])
		l <- l+1}
	f.even <- fx[seq(l) %% 2 == 0]
	f.odd  <- fx[seq(l) %% 2 == 1]
	fs    <- 2 * cumsum(f.odd) - f.odd - f.odd[1]
	fsm   <- 4 * cumsum(f.even)
	ff <- c(0,(fs[2:(l2+1)]+fsm)/3 )
	ff
}

.makePd <- function(x,y, yleft, yright){
	stepfun(x = x, y = c(yleft, y))
}

.makeQd <- function(x,y, yleft, yright){
	force(y)
	force(x)
	f <- function(u) {
		q0 <- sapply(u, 
				function(z) y[min(sum(x < z-.Machine$double.eps) + 1,
									length(y)) ] )
		q0[.isEqual(u,0)] <- yleft
		q0[.isEqual(u,1)] <- yright
		return(q0)}
	return(f)
}
.makePNew <- function(x, dx, h = NULL, notwithLLarg = FALSE,
		Cont = TRUE, myPf = NULL, pxl = NULL, pxu = NULL){
	
	if (is.null (h)) h <- 0
	
	x.u <- x.l <- x
	if (Cont){
		mfun <- if (is.null (myPf)) approxfun else myPf
		l <- length(x)
		if ((l%%2==0)&& is.null(myPf)){
			l2 <- l/2
			if (is.null(pxl))
				x.l <- c(x[1:l2],(x[l2]+x[l2+1])/2,x[(l2+1):l])
			if (is.null(pxu))
				x.u <- c(x[1:l2],(x[l2]+x[l2+1])/2,x[(l2+1):l])
			l <- l+1
		}
		cfun <- .csimpsum
		if (is.null(pxl)&& is.null(myPf))
			x.l <- x.l[seq(l)%%2==1]
		if (is.null(pxu)&& is.null(myPf))
			x.u <- x.u[seq(l)%%2==1]
	}else    {
		mfun <- .makePd
		cfun <- cumsum
	}       
	
	p.l <- if(!is.null(pxl)) pxl else cfun(dx)
	
	nm <- max(p.l)
	p1.l <- mfun(x = x.l, y = p.l, yleft = 0, yright = nm)
	nm <- p1.l(max(x))
	if(notwithLLarg){
		ifElsePS <- substitute(if (lower.tail) p1.l(q) else 1 - p1.l(q))
	}else{
		p.u <- if(!is.null(pxu)) pxu else rev(cfun(rev(dx)))
		## continuity correction by h/2
		if (!Cont) p.u <- c(p.u[-1],0)
		p1.u <- mfun(x = x.u, y = p.u, yright = 0, yleft = nm)
		rm(p.u)
		ifElsePS <- substitute(if (lower.tail) p1.l(q) else p1.u(q))
	}
	pfun <- function(q, lower.tail = TRUE, log.p = FALSE){}
	body(pfun) <- substitute(
			{ p0 <- ifElsePC
				p0 <- if (log.p) log(p0)-log(nm) else p0/nm
				return(p0)
			}, list(ifElsePC = ifElsePS))
	rm(dx, p.l, notwithLLarg)
	return(pfun)
}
.isEqual <- function(p0, p1, tol = min(1e-05/2, .Machine$double.eps^.7)) abs(p0-p1)< tol

.isIn <- function(p0, pmat, tol = min(1e-05/2,.Machine$double.eps^.7))
{list1 <- lapply(1:nrow(pmat), function(x){ 
				(p0+tol > pmat[x,1]) & (p0-tol < pmat[x,2]) })
	apply(matrix(unlist(list1), ncol = nrow(pmat)), 1, any)}

.isEqual01<- function(x) .isEqual(x,0)|.isEqual(x,1)

.setEqual <- function(x, y, tol = 1e-7){
	### all elements of x equal to some element of y up tol are set to exactly
	###     the respective element of y
	x1 <- round(2*x/tol,0)
	y1 <- round(2*y/tol,0)
	z  <- x
	m  <- match(x1,y1)
	n.ina.m <- !is.na(m)
	z[n.ina.m] <- y[m[n.ina.m]]
	z
}
.makeQc <- function(x,y, yleft, yright){
	yl <- if(is.finite(yleft)) yleft  else y[1]
	yr <- if(is.finite(yright)) yright else y[length(y)]
	f1 <- approxfun(x = x, y = y, yleft = yl, yright = yr)
	f <- function(x) 
	{y1 <- f1(x)
		y1[.isEqual(x,0)] <- yleft
		y1[.isEqual(x,1)] <- yright
		return(y1)
	}
	return(f)
}

.makeQNew <- function(x, dx, h)
{
	pdnew=.makePNew(x, dx, h)
	notwithLLarg = FALSE
	yL = -Inf
	yR =  Inf
	px.l <- pdnew(x + 0.5*h)
	px.u <- pdnew(x + 0.5*h, lower.tail = FALSE)
	
	Cont=TRUE
	mfun <- .makeQc
	ix <- .isEqual01(px.l)
	if(!is.finite(yR)||Cont)
	{xx <- px.l[!ix]; yy <- x[!ix]}
	else  
	{xx <- px.l; yy <- x}
	q.l <- mfun(x = xx, y = yy, yleft = yL, yright = yR)
	rm(xx,yy)
	if(notwithLLarg){
		ifElseQS <- quote(if (lower.tail) q.l(p01) else q.l(1-p01))
	}else{
		#         px.u <- rev(px.u);
		x <- rev(x)
		if (Cont) px.u <- rev(px.u)
		ix <- .isEqual01(px.u)
		xx <- px.u[!ix]
		yy <- if (Cont) x[!ix] else x[rev(!ix)]
		q.u <- mfun(x = xx, y = yy, yleft = yR, yright = yL)
		rm(xx,yy)
		ifElseQS <- quote(if (lower.tail) q.l(p01) else q.u(p01))
	}
	qfun <- function(p, lower.tail = TRUE, log.p = FALSE){}
	body(qfun) <- substitute({
				if (log.p) p <- exp(p)
				if (any((p < -.Machine$double.eps)|(p > 1+.Machine$double.eps)))
					warning(gettextf("q method of %s produced NaN's ", objN))
				i01 <- (-.Machine$double.eps<=p)&(p<=1+.Machine$double.eps)
				p01 <- p[i01] ## only values in [0,1] are used
				q0  <- p*0
				q0[!i01] <- NaN
				q0[ i01] <- ifElseQC
				return(as.numeric(q0))
			}, list(ifElseQC = ifElseQS, objN = quote(.getObjName(1))))
	return(qfun)
}


.coskew.ind = function(skewval)
{
	n = length(skewval)
	cs = matrix(0, ncol = n^2, nrow = n)
	# diagonal tensor type indices using column type count
	indx = ((1:n)-1) * n^2 + ((1:n)-1) * n + (1:n)
	cs[indx] = skewval
	return(cs)
}

# N (pairs) = 2*(n^2)+n*(n-3)
# unique 2-pair combinations : factorial(n)/(factorial(n-2)*factorial(2))
# for each pair:
# Y = combn(1:n, 2)
# Tabulation:
# No. of unique pairs whose difference is 1: n-1 [{2,1},{3,2},...,{n,n-1}]
# No. of unique pairs whose difference is 2: n-2 [{3,1},{4,2},...,{n,n-2}]
# No. of unique pairs whose difference is n-1: 1 [{n,1}]


.cokurt.pairs = function(n)
{
	# Author: Alexios Ghalanos 
	# Copyright (C) 2013 (part of the rmgarch package)
	# Finds the locations of each i=j, k=l pair in an N x N^3 matrix representing 
	# the collapsed co-kurtosis tensor
	# As an example, the N=4 matrix below illustrates the indexing and the position of the pairs:
	# The code which follows generates the 1-dimensional index (based on columnwise counting) of
	# each pair and also returns the associates pair (for knowing which sigma values to multiply
	# to obtain the fourth co-moment).
	##
	## j:    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	## k:    1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4     
	## l:    1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4     
	## i: 1  . . . . . x . . . . x . . . . x . x . . x . . . . . . . . . . . . . x . . . . . x . . . . . . . . . . x . . . . . . . . x . . .  
	## i: 2  . x . . x . . . . . . . . . . . x . . . . . . . . . x . . . . x . . . . . . x . . x . . . . . . . . . . . . . x . . . . . x . .
	## 1: 3  . . x . . . . . x . . . . . . . . . . . . . x . . x . . . . . . x . . . . x . . . . . . . . . x . . . . . . . . . . . x . . x .
	## i: 4  . . . . . . . . . . . . x . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . x . . x . x . . . . . . . . . x . . . . .
	
	unique_pairs = factorial(n)/(factorial(n-2)*factorial(2))
	idx = vector(mode="list", length = unique_pairs)
	prs = t(combn(n, 2))
	prs = cbind(prs[,2], prs[,1], prs[,2] - prs[,1])
	prs = prs[order(prs[,1]-prs[,2]), ,drop=FALSE]
	colnames(prs) = c("ij","kl","d")
	ix = n+2
	# first pair is always : {2,1}
	idx[[1]] = cumsum(c(ix, (n-1)*n, (n-1), (n+1)*(n-1)^2, (n-1), (n-1)*n))
	if(unique_pairs>1){
		for(i in 2:unique_pairs){
			d = prs[i,3]
			if(d == prs[i-1,3]){
				i1 = idx[[i-1]][1]+n^3+n^2+n+1
			} else{
				i1 = ix+n+1
				ix = i1
			}
			idx[[i]] = cumsum(c(i1, d*(n-1)*n, d*(n-1), d*(n+1)*(n-1)^2, d*(n-1), d*(n-1)*n))
		}
	}
	return(list(index = idx, pairs = prs))
}

.cokurt.ind = function(sigma2, kurtvals)
{
	n = length(sigma2)
	x = .cokurt.pairs(n)
	ix = ((1:n)-1) * n^3  + ((1:n)-1) * n^2 + ((1:n)-1) * n + (1:n)
	z = rep(0, n*n^3)
	z[ix] = kurtvals
	for(i in 1:nrow(x$pairs)) z[x$index[[i]]] = sigma2[x$pairs[i,1]]*sigma2[x$pairs[i,2]]
	cs = matrix(z, ncol = n^3, nrow = n)
	return(cs)
}



.coskew.sigma = function(sigmas)
{
	n = length(sigmas)
	idx1 = sort(rep(1:n, n^2))
	idx2 = rep(sort(rep(1:n, n)), n)
	idx3 = rep(1:n, n^2)
	idx = cbind(idx1, idx2, idx3)
	zs = as.numeric(.Call("gogarchcssigma", idx = as.matrix(idx-1), SS = as.numeric(sigmas),
					PACKAGE = "rmgarch"))
	# apply(idx, 1, FUN = function(x) prod(sigmas[x]))
	cs = matrix(zs, ncol = n^2, nrow = n, byrow = TRUE)
	return(cs)
}

.cokurt.sigma = function(sigmas)
{
	n = length(sigmas)
	idx1 = sort(rep(1:n, n^3))
	idx2 = rep(sort(rep(1:n, n^2)), n)
	idx3 = rep(sort(rep(1:n, n)), n^2)
	idx4 = rep(1:n, n^3)
	idx = cbind(idx1, idx2, idx3, idx4)
	zs = as.numeric(.Call("gogarchcksigma", idx = as.matrix(idx-1), SS = as.numeric(sigmas),
					PACKAGE = "rmgarch"))
	# zs = apply(idx, 1, FUN = function(x) prod(sigmas[x]))
	cs = matrix(zs, ncol = n^3, nrow = n, byrow = TRUE)
	return(cs)
}

.dfft = function(object, index = 1)
{
	# change adjust index for the rolling forecast
	if(object@model$modtype=="goGARCHforecast" | object@model$modtype=="goGARCHroll"){
		if(object@model$n.ahead==1) index = index+1
	}
	switch(object@dist$dist,
			mvnorm = .dfft.mn(object, index),
			manig = .dfft.num(object, index),
			magh = .dfft.num(object, index))
}

.dfft.num = function(object, index = 1)
{
	if( object@dist$support.method == "user" ){
		n = dim(object@dist$y)[2]
		if(index>n) stop("\nindex outside dimensions of object\n", call. = FALSE)
		x = seq(object@dist$fft.support[1], object@dist$fft.support[2], by = object@dist$fft.by)
		return(.makeDNew(x = x, dx = object@dist$y[1:length(x),index], h = object@dist$fft.by, standM = "sum"))
	} else{
		n = length(object@dist$y)
		if(index>n) stop("\nindex outside dimensions of object\n", call. = FALSE)
		x = seq(object@dist$support.user[index, 1], object@dist$support.user[index, 2], by = object@dist$fft.by)
		return(.makeDNew(x = x, dx = object@dist$y[[index]], h = object@dist$fft.by, standM = "sum"))
	}
}

.dfft.mn = function(object, index)
{
	return(function(x) dnorm(x, mean = object@dist$y[index, 1], sd = sqrt(object@dist$y[index, 2])))
	
}

.pfft = function(object, index = 1)
{
	# change adjust index for the rolling forecast
	if(object@model$modtype=="goGARCHforecast" | object@model$modtype=="goGARCHroll"){
		if(object@model$n.ahead==1) index = index+1
	}
	switch(object@dist$dist,
			mvnorm = .pfft.mn(object, index),
			manig = .pfft.num(object, index),
			magh = .pfft.num(object, index))
}

.pfft.num = function(object, index = 1)
{
	if( object@dist$support.method == "user" ){
		n = dim(object@dist$y)[2]
		if(index>n) stop("\nindex outside dimensions of object\n", call. = FALSE)
		x = seq(object@dist$fft.support[1], object@dist$fft.support[2], by = object@dist$fft.by)
		return(.makePNew(x = x, dx = object@dist$y[1:length(x),index], h = object@dist$fft.by))
	} else{
		n = length(object@dist$y)
		if(index>n) stop("\nindex outside dimensions of object\n", call. = FALSE)
		x = seq(object@dist$support.user[index, 1], object@dist$support.user[index, 2], by = object@dist$fft.by)
		return(.makePNew(x = x, dx = object@dist$y[[index]], h = object@dist$fft.by))
	}
}

.pfft.mn = function(object, index)
{
	return(function(q) pnorm(q, mean = object@dist$y[index, 1], sd = sqrt(object@dist$y[index, 2])))
	
}

.qfft = function(object, index = 1)
{
	# change adjust index for the rolling forecast
	if(object@model$modtype=="goGARCHforecast" | object@model$modtype=="goGARCHroll"){
		if(object@model$n.ahead==1) index = index+1
	}
	switch(object@dist$dist,
			mvnorm = .qfft.mn(object, index),
			manig = .qfft.num(object, index),
			magh = .qfft.num(object, index))
}

.qfft.num = function(object, index = 1)
{
	if( object@dist$support.method == "user" ){
		n = dim(object@dist$y)[2]
		if(index>n) stop("\nindex outside dimensions of object\n", call. = FALSE)
		x = seq(object@dist$fft.support[1], object@dist$fft.support[2], by = object@dist$fft.by)
		return(.makeQNew(x = x, dx = object@dist$y[1:length(x),index], h = object@dist$fft.by))
	} else{
		n = length(object@dist$y)
		if(index>n) stop("\nindex outside dimensions of object\n", call. = FALSE)
		x = seq(object@dist$support.user[index, 1], object@dist$support.user[index, 2], by = object@dist$fft.by)
		return(.makeQNew(x = x, dx = object@dist$y[[index]], h = object@dist$fft.by))
	}
}

.qfft.mn = function(object, index)
{
	return(function(p) qnorm(p, mean = object@dist$y[index, 1], sd = sqrt(object@dist$y[index, 2])))
	
}
mcremene/changedRmgarch2 documentation built on Feb. 5, 2021, 12:46 a.m.