Description Usage Arguments Value Author(s) References See Also Examples
Gap statitistic is a measurement of goodness of clustering result. This is a convenient function to calculate the gap statistic of clustering "moa".
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | moGap(
x,
K.max,
B = 100,
cluster = c("kmeans", "hclust"),
plot = TRUE,
dist.method = "euclidean",
dist.diag = FALSE,
dist.upper = FALSE,
dist.p = 2,
hcl.method = "complete",
hcl.members = NULL,
km.iter.max = 10,
km.nstart = 10,
km.algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
km.trace = FALSE
)
|
x |
An object of class |
K.max |
The maximum number of clusters to consider, passed to
|
B |
The number of bootstrap, passed to |
cluster |
A charater string could be either "kmeans" or "hclust" to specify the clustering algorithm. |
plot |
Logical; whether return the gap statistic plot. |
dist.method |
Distance meaurement, passed to function |
dist.diag |
Passed to function |
dist.upper |
Passed to function |
dist.p |
Passed to function |
hcl.method |
Hierarchical clustering method, passed to |
hcl.members |
Passed to |
km.iter.max |
Maximum number of iteration in kmeans, passed to
|
km.nstart |
An integer to specify how many random sets should be
chosen. passed to |
km.algorithm |
Kmeans algorithm, passed to |
km.trace |
See function |
It returns a list consists of five components:
"Tab", "n", "B", "FUNcluster" - see clusGap
"nClust" - the estimated number of clusters using different method, see
maxSE
Chen Meng
Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. Journal of the Royal Statistical Society B, 63, 411-423.
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2015). cluster: Cluster Analysis Basics and Extensions. R package version 2.0.1.
Function "clusGap" in "cluster" package Function "dist", "hclust", "kmeans"
1 2 3 4 5 6 7 8 9 10 11 12 13 | # see examples in \code{\link{mbpca}}
data("NCI60_4arrays")
moa <- mbpca(NCI60_4arrays, ncomp = 10, k = "all", method = "globalScore", option = "lambda1",
center=TRUE, scale=FALSE)
gap <- moGap(moa, K.max = 12, cluster = "hcl")
genes <- moaCoef(moa)
scr <- moaScore(moa)
moa2 <- moa(NCI60_4arrays, proc.row="center_ssq1", w.data="inertia", w.row=NULL, statis=FALSE)
gap2 <- moGap(moa, K.max = 12, cluster = "hcl")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.