Description Details Author(s) References Examples
Modern "omics" technologies enable quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, accumulating an unprecedented amount of quantitative information on a genomic scale. Gene set analysis is a particularly useful method in high throughput data analysis since it can summarize single gene level information into the biological informative gene set levels. This package provide a method do the gene set analysis based on multiple omics data that describing the same set of observations/samples.
Package: | mogsa |
Type: | Package |
Version: | 1.3.1 |
Date: | 2016-01-19 |
License: | GPL-2 |
Depends: | methods |
The main function in the package is "mogsa", see the function help manu for more details.
Chen Meng Maintainer: Chen Meng <chen.meng@tum.de>
Chen Meng, Dominic Helm, Martin Frejno, and Bernhard Kuster. moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. Journal of Proteome Research 2016.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # library(mogsa)
# loading gene expression data and supplementary data
data(NCI60_4array_supdata)
data(NCI60_4arrays)
# using a list of data.frame as input
mgsa1 <- mogsa(x = NCI60_4arrays, sup=NCI60_4array_supdata, nf=9,
proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
# using moa as input
ana <- moa(NCI60_4arrays, proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
smoa <- sup.moa(ana, sup=NCI60_4array_supdata, nf=3)
mgsa2 <- mogsa(x = ana, sup=NCI60_4array_supdata, nf=9)
mgsa3 <- mogsa(x = ana, sup=smoa)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.