moa-class: plot moa object

Description Usage Arguments Details Objects from the Class Author(s) References Examples

Description

moa class object

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## S4 method for signature 'moa,missing'
plot(
  x,
  value,
  type = 1,
  axes = NULL,
  n = NULL,
  tol = 1e-05,
  legend = NULL,
  col = NULL,
  lty = 1,
  pch = NULL,
  lg.x = "topright",
  lg.y = NULL,
  xlim = NULL,
  ylim = NULL,
  data.pch = 20,
  label = FALSE,
  label.cex = 1,
  layout = NULL,
  ...
)

Arguments

x

an moa object

value

which value to be plotted, see details

type

which type of plot to be plotted, see details

axes

which axes to be plotted

n

Numbe of eigenvalues to shown

tol

Only eigenvalues greater than the tol will be plotted

legend

legend

col

color

lty

line type

pch

point shape

lg.x

legend position x

lg.y

legend position y

xlim

coordinate limit of x axis

ylim

coordinate limit of y axis

data.pch

the pch (shape) used to distinguish shapes

label

point label

label.cex

size of labels

layout

layout passed to par()

...

other parameters

Details

value options: eig - plot the eigen values ... could be: type=1 - the type of plot axes=NULL - the axes selected to plot n=NULL - n eigenvalues to be drawn tol=1e-5 - the tolerance of eigenvalue, eigenvalues lower than this value wont be considered. legend=NULL - legend to put col=NULL - the color of each partial eigenvalue lty=1 - the line type used in the matplot, when type =4, used pch=NULL - the pch to draw 2D partial eigen plot, when type = 5 used lg.x="topright" - the position of legend lg.y=NULL - poistion argument passed to legend(...) ... - other arguemnts passed to functions, see below for: type 1: the eigen value ... are passed to barplot type 2: barplot show, partial eigenvalue, beside=FALSE ... are passed to barplot type 3: barplot show, partial eigenvalue, beside =TRUE ... are passed to barplot type 4: matplot show ... are passed to matplot type 5: the two dimensional plot, axes need to be specified ... are passed to heatmap tau - the same with eig, but in the percentage view ... could be (same with eig, but in the percentage) obs - the observation ... could be: axes=1:2 - which axes should be draw type=1 - which type, see below data.pch=20 - the pch of dataset, if type=1, the first one is used col=1 - the color of observations, recycled used by data.frame label=FALSE - should be labeled? lg.x="topright" - position of legend lg.y=NULL - position of legend xlim=NULL - the xlimit ylim=NULL - the ylimit label.cex=1 - the cex of text ... for: type 1: the center points draw ... passed to points type 2: the separate factor scores linked by lines ... passed to points var - the separate gene view, layout can be specified RV - the heatmap of RV coefficient

Objects from the Class

Objects can be created by calls of the form new("moa", ...).

Author(s)

Chen Meng

References

Herve Abdi, Lynne J. Williams, Domininique Valentin and Mohammed Bennani-Dosse. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat 2012. Volume 4, Issue 2, pages 124-167

Herve Abdi, Lynne J. Williams, Domininique Valentin. Multiple factor analysis: principal component analysis for multitable and multiblock data sets. WIREs Comput Stat 2013

Examples

1
2
3
4
5
6
7
    showClass("moa")
    # load("R/mogsa/data/NCI60_4arrays.rda")
    data(NCI60_4arrays)
    ana <- moa(NCI60_4arrays, proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)

    plot(ana, value="eig")
    plot(ana, value="tau", type=2)

mengchen18/mogsa documentation built on June 7, 2020, 6:05 p.m.