Description Usage Arguments Details Value Author(s) See Also Examples
SVD with sparsity, non-negative and weight constrants
1 2 3 4 5 6 7 8 9 10 11 12 |
x |
the matrix to be decomposed |
nf |
the number of components want to computed |
kv |
the number of nonzero coefficients for the right regularized sigular vectors |
ku |
the number of nonzero coefficients for the left regularized sigular vectors |
wv |
the weight for columns of x |
wu |
the weight for rows of of x |
pos |
Logical value, if only retain non-negative values in the |
maxiter |
the maximum number of iteration |
tol |
the tolerance of error |
verbose |
print progress of calulation |
The algorithm use a generalized version of NIPALS algorithm to allow sparsity, force non-negative values on both left and rigth singular vectors. In addition, different weghted could be introduced, the columns/rows with bigger weights are more likely to be selected.
the same as svd, list of three components, d, u, v
Chen Meng
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #' a random matrix
x <- matrix(rnorm(50), 5, 10)
ss <- svd(x)
ss2 <- softSVD(x, nf = 5)
ss$d
ss2$d
all.equal(abs(ss$u), abs(ss2$u))
all.equal(abs(ss$v), abs(ss2$v))
#' NCI60 data
library(mogsa)
data("NCI60_4arrays")
#
d <- as.matrix(NCI60_4arrays$agilent)
###' compare with svd
ss <- svd(d, nu = 5, nv = 5)
ss2 <- softSVD(d, nf = 5)
ss$d
ss2$d
all.equal(abs(ss$u), abs(ss2$u))
all.equal(abs(ss$v), abs(ss2$v))
#' normalize the data
dt <- scale(t(d), scale = FALSE)
pp <- softSVD(x = dt, nf = 5, kv = 30, ku = 6, maxiter = 100)
barplot(pp$u[, 1], col = as.factor(substr(colnames(d), 1, 2)))
barplot(pp$v[, 1])
#' change sparsity
dt <- scale(t(d), scale = FALSE)
pp <- softSVD(x = dt, nf = 5, kv = 30, ku = 9, maxiter = 1000, pos = TRUE)
i <- 2
barplot(pp$u[, i], col = as.factor(substr(colnames(d), 1, 2)), las=2, names.arg = rownames(dt))
barplot(pp$v[, i])
#' change sparsity
pp <- softSVD(x = dt, nf = 5, kv = Inf, ku = 9, maxiter = 1000, pos = TRUE)
i <- 1
barplot(pp$u[, i], col = as.factor(substr(colnames(d), 1, 2)), las=2, names.arg = rownames(dt))
barplot(pp$v[, i])
#' change sparsity
pp <- softSVD(x = dt, nf = 5, kv = 30, ku = Inf, maxiter = 1000, pos = FALSE)
i <- 1
barplot(pp$u[, i], col = as.factor(substr(colnames(d), 1, 2)), las=2, names.arg = rownames(dt))
barplot(pp$v[, i])
#' use weight
w <- rowSums(d - min(d))
w <- w + max(w) #' prefer to select high intensity genes
pw <- softSVD(x = dt, nf = 6, kv = 30, ku = Inf, wv = w, maxiter = 1000, pos = FALSE, verbose = TRUE)
i <- 6
barplot(pw$u[, i], col = as.factor(substr(colnames(d), 1, 2)), las=2, names.arg = rownames(dt))
barplot(pw$v[, i])
i1 <- apply(pp$v, 1, function(x) any(x!=0))
i2 <- apply(pw$v, 1, function(x) any(x!=0))
plot(pw$u[, 1], pp$u[, 1])
layout(matrix(1:2, 1, 2))
hist(d[i1 & !i2, ], main = "No weight")
hist(d[i2 & !i1, ], main = "Weight")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.