View source: R/cKmeansWrapper.R
cKmeansWrapper | R Documentation |
This fuction is a wrapper for the constrained Kmeans algorithm using 'lcvqe' from the 'conclust' package. This function is not meant to be run individually, but as a 'clustFunc' argument for running 'K2preproc()', 'runK2Taxonomer()', and 'K2tax()'.
cKmeansWrapper(dataMatrix, clustList)
dataMatrix |
An P x N numeric matrix of data |
clustList |
List of objects to use for clustering procedure. |
A character string of concatenated 1's and 2's pertaining to the cluster assignment of each column in dataMatrix.
reed_2020K2Taxonomer \insertRefcKmK2Taxonomer
dat <- scRNAseq::ReprocessedAllenData(assays='rsem_tpm')[seq_len(50),]
eSet <- ExpressionSet(assayData=assay(dat))
pData(eSet) <- as.data.frame(colData(dat))
exprs(eSet) <- log2(exprs(eSet) + 1)
## Subset for fewer cluster labels for this example
eSet <- eSet[, !is.na(eSet$Primary.Type) &
eSet$Primary.Type %in% c('L4 Arf5',
'L4 Ctxn3', 'L4 Scnn1a', 'L5 Ucma', 'L5a Batf3')]
## Create cell type variable with spaces
eSet$celltype <- gsub(' ', '_', eSet$Primary.Type)
## Create clustList
cL <- list(
eMat=exprs(eSet),
labs=eSet$celltype,
maxIter=10)
## Run K2preproc to generate generate data matrix
## with a column for each celltype.
K2res <- K2preproc(eSet,
cohorts='celltype',
featMetric='F',
logCounts=TRUE)
dm <- K2data(K2res)
## Generate K=2 split with constrained K-means
cKmeansWrapperSubsample(dm, cL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.