runGSEmods | R Documentation |
Adds hyperenrichment analysis results to the output of runDGEmods().
runGSEmods(
K2res,
genesets = NULL,
qthresh = NULL,
cthresh = NULL,
ntotal = NULL
)
K2res |
An object of class K2. The output of runDGEmods(). |
genesets |
A named list of feature IDs |
qthresh |
A numeric value between 0 and 1 of the FDR cuttoff to define feature sets. |
cthresh |
A positive value for the coefficient cuttoff to define |
ntotal |
The total number of genes sampled from. feature sets. |
An object of class K2.
reed_2020K2Taxonomer \insertRefbhK2Taxonomer
## Read in ExpressionSet object
library(Biobase)
data(sample.ExpressionSet)
## Pre-process and create K2 object
K2res <- K2preproc(sample.ExpressionSet)
## Run K2 Taxonomer algorithm
K2res <- K2tax(K2res,
stabThresh=0.5)
## Run differential analysis on each partition
K2res <- runDGEmods(K2res)
## Create dummy set of gene sets
DGEtable <- getDGETable(K2res)
genes <- unique(DGEtable$gene)
genesetsMadeUp <- list(
GS1=genes[1:50],
GS2=genes[51:100],
GS3=genes[101:150])
## Run gene set hyperenrichment
K2res <- runGSEmods(K2res,
genesets=genesetsMadeUp,
qthresh=0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.