runGSVAmods | R Documentation |
Adds hyperenrichment analysis results to the output of runDGEmods().
runGSVAmods(K2res, ssGSEAalg = NULL, ssGSEAcores = NULL, ...)
K2res |
An object of class K2. The output of runDGEmods(). |
ssGSEAalg |
A character string, specifying which algorithm to use for running the gsva() function from the GSVA package. Options are 'gsva', 'ssgsea', 'zscore', and 'plage'. 'gsva' by default. |
ssGSEAcores |
Number of cores to use for running gsva() from the GSVA package. Default is 1. |
... |
Additional arguments passed onto GSVA::gsva() |
An object of class K2.
reed_2020K2Taxonomer \insertRefgsvaK2Taxonomer
## Read in ExpressionSet object
library(Biobase)
data(sample.ExpressionSet)
## Pre-process and create K2 object
K2res <- K2preproc(sample.ExpressionSet)
## Run K2 Taxonomer algorithm
K2res <- K2tax(K2res,
stabThresh=0.5)
## Run differential analysis on each partition
K2res <- runDGEmods(K2res)
## Create dummy set of gene sets
DGEtable <- getDGETable(K2res)
genes <- unique(DGEtable$gene)
genesetsMadeUp <- list(
GS1=genes[1:50],
GS2=genes[51:100],
GS3=genes[101:150])
## Run gene set hyperenrichment
K2res <- runGSEmods(K2res,
genesets=genesetsMadeUp,
qthresh=0.1)
## Run GSVA on genesets
K2res <- runGSVAmods(K2res,
ssGSEAalg='gsva',
ssGSEAcores=1,
verbose=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.