rm(list = ls(all = TRUE))
setwd("E:/Group/report/round16/Scripts/")
# Loading required packages
source("functions/load_packages.R")
pkgs <- c(
"prevalence", "mgcv", "mgcViz", "MASS", "dplyr",
"tidyr", "forcats", "ggplot2", "qpcR", "survey", "reshape2",
"openxlsx"
)
load_packages(pkgs)
# Source any functions from the local file
source("functions/add_conf_ints.R")
source("functions/make_tables.R")
source("functions/overall_prev.R")
source("functions/formatting_functions.R")
## Parametrisation
# Modelling options
weighted <- FALSE # whether weighted prevalences should be included or not
# Copying output files directly to transfer folder
direct_export <- TRUE
# Choice of rounds
round_ids <- c(16)
# Paths to files
overall_file <- "E:/Group/report/round16/Tables/Overall_prevalence"
output_file <- "E:/Group/report/round16/Tables/Prevalence"
output_tag <- Sys.Date()
annot_file <- "E:/Group/report/round16/Parameters/Variable_names.xlsx"
template_file <- "E:/Group/report/round16/Parameters/Table2a_flu"
template_sheet1 <- "Table2a"
template_sheet2 <- "Table2b"
recoding_file <- "E:/Group/report/round16/Parameters/Recoding.xlsx"
recoding_from_cont_file <- "E:/Group/report/round16/Parameters/Recoding_from_continuous_flu.xlsx"
# Fetching corresponding template
if (weighted) {
template_file <- paste0(template_file, "_weighted.xlsx")
output_file <- paste0(output_file, "_weighted")
} else {
template_file <- paste0(template_file, "_unweighted.xlsx")
output_file <- paste0(output_file, "_unweighted")
}
# Variable for test results
output_file_tmp=output_file
overall_file_tmp=overall_file
for (vaccinated in c("vaccinated", "unvaccinated")){
for (res_param in c("influenzaa", "influenzab", "influenza", "influenzaab")){
output_file <- paste0(output_file_tmp, "_", res_param, "_", vaccinated)
overall_file=paste0(overall_file_tmp, "_", res_param, "_", vaccinated)
# Variable for weights
if (weighted) {
weight_params <- c("id", "lacode", "wt_antigen")
names(weight_params) <- c("id", "strata", "weights")
} else {
weight_params <- NULL
}
# Variables for stratification
covs <- c(
"gender_char", "age", "region",
"work_new_alt", "ethnic_new_char",
"hh_size_cat", "covidcon_char", "sympt_cat",
"nchild2",
"imd_quintile", "vax_status_noDate_v2"
)
# Defining the column widths / row heights
column_widths <- c(5.5, 5.5, 19)
if (weighted) {
column_widths <- c(column_widths, 19)
}
row_height <- 15
## Computing the prevalences
for (round_id in round_ids) {
# Path to the data
data_file <- paste0("E:/Group/saved_objects/rep", round_id, ".rds")
## Checking parameters
# Checking required sheets are in template
sheet_names <- getSheetNames(template_file)
tocheck <- c(template_sheet1, template_sheet2) %in% sheet_names
if (!all(tocheck)) {
stop(paste0(
"Sheets are not found in the template: ",
c(template_sheet1, template_sheet2)[!tocheck]
))
}
## Loading and preparing the data
# Loading the data
df_round <- data.frame(readRDS(data_file))
if (vaccinated=="vaccinated"){
ids=which(df_round$fluvacc=="1")
df_round=df_round[ids,]
} else {
ids=which(df_round$fluvacc%in%c("2","3"))
df_round=df_round[ids,]
}
# Adding variable introduced in round 15
if (!"vax_status_noDate_v2" %in% colnames(df_round)) {
df_round$vax_status_noDate_v2 <- df_round$vax_status_noDate
}
# Recoding influenza infection
for (mytest in c("influenzaa", "influenzab")){
df_round[,mytest]=as.numeric(as.character(factor(df_round[,mytest],
levels=c("negative", "positive"),
labels=c(0,1))))
}
df_round$influenza=ifelse(df_round$influenzaa+df_round$influenzab>0, yes=1, no=0)
df_round$influenzaab=ifelse(df_round$influenzaa+df_round$influenzab==2, yes=1, no=0)
# Removing missing in estbinres/flu test results
df_round <- df_round %>%
filter(!is.na(estbinres)) %>%
mutate(group = "Overall")
df_round <- df_round %>%
filter(!is.na(influenzaa)) %>%
mutate(group = "Overall")
df_round <- df_round %>%
filter(!is.na(influenzab)) %>%
mutate(group = "Overall")
if (weighted) {
# Removing missing in weights
df_round <- df_round %>% filter(!is.na(wt_antigen))
}
df_round <- df_round %>%
mutate(vax_status_cat = ifelse(is.na(vax_status_cat), "NA", vax_status_cat)) %>%
# mutate(
# vax_wane = ifelse(is.na(vax_wane), "NA", vax_wane),
# rm_dip = ifelse(rm_dip==-1, "NA", rm_dip),
# rm_dip2 = case_when(rm_dip == 1 ~ "1",
# rm_dip == 2 ~ "2",
# rm_dip %in% c(3:12) ~ "3+",
# rm_dip == "NA" ~ "NA")) %>%
mutate(
# vax_status_cat = factor(vax_status_cat, levels = c("Not vaccinated", "One does", "Two does",
# "Unknown does", "NA")),
# vax_wane = factor(vax_wane, levels = c("Unvaccinated", "1 dose", "2 dose < 3 months", "2 dose 3-6 months",
# "2 dose > 6 months", "NA")),
vax_status_noDate = factor(vax_status_noDate, levels = c(
"Not vaccinated", "One does", "Two does",
"Unknown does", "NA"
)),
vax_status_noDate_v2 = factor(vax_status_noDate_v2, levels = c(
"Not vaccinated", "One does", "Two does",
"Three does", "Unknown does", "NA"
))
) %>%
mutate(covidcon_char = ifelse(is.na(covidcon_char), "NA", as.character(covidcon_char))) %>%
mutate(covidcon_char = factor(covidcon_char,
levels = c(
"Yes, contact with confirmed/tested COVID-19 case",
"Yes, contact with suspected COVID-19 case",
"No", "NA"
)
))
## Overall prevalence
# Unweighted
overall_prev_tab_exact <- bind_rows(
overall_prev(df_round, method = "exact", outcome = res_param),
.id = "Round"
) %>%
mutate(Round = c(as.character(round_id)))
overall_prev_tab_exact <- as.matrix(overall_prev_tab_exact)
mytable <- cbind(
overall_prev_tab_exact[, 1, drop = FALSE],
FormatCount(overall_prev_tab_exact[, 2:3, drop = FALSE]),
FormatCI(FormatPrevalence(overall_prev_tab_exact[, 4:6, drop = FALSE]))
)
colnames(mytable) <- c("Round", "Positive", "Total", "Unweighted prevalence")
# Weighted
if (weighted) {
dclus15g <- svydesign(id = ~id, strata = ~lacode, weights = ~wt_antigen, data = df_round, nest = TRUE)
wt_prev_o_r15 <- svyby(~estbinres, by = ~group, design = dclus15g, FUN = svyciprop, vartype = "ci") %>% rename(level = group)
wt_prev_tab <- bind_rows(wt_prev_o_r15,
.id = "round"
) %>%
rename(
wt_prev = estbinres,
lower = ci_l,
upper = ci_u
) %>%
mutate(round = c("15"))
mytable <- cbind(
mytable,
FormatCI(FormatPrevalence(wt_prev_tab[, 3:5, drop = FALSE]))
)
colnames(mytable)[ncol(mytable)] <- "Weighted prevalence"
}
write.xlsx(mytable,
colNames = TRUE,
paste0(overall_file, "_r", round_id, "_", output_tag, ".xlsx")
)
if (direct_export) {
file.copy(
from = paste0(overall_file, "_r", round_id, "_", output_tag, ".xlsx"),
to = "T:/", overwrite = TRUE
)
}
## Prevalence stratified by covariates
# Extracting covariate names
tmp <- read.xlsx(annot_file)
covs_names <- tmp[, 2]
names(covs_names) <- tmp[, 1]
covs_names <- covs_names[covs]
# Removing unused variables
df_round <- df_round[, c(res_param, covs, weight_params)]
# Recoding categorical variables
covs_to_recode <- getSheetNames(recoding_file)
covs_to_recode <- intersect(names(covs_names), covs_to_recode)
if (length(covs_to_recode) > 0) {
for (i in 1:length(covs_to_recode)) {
recoding <- read.xlsx(recoding_file, sheet = covs_to_recode[i])
recoding[which(is.na(recoding[, 1])), 1] <- "NA"
renaming <- recoding[, 2]
names(renaming) <- recoding[, 1]
x <- as.character(df_round[, covs_to_recode[i]])
print(table(x))
x[is.na(x)] <- "NA"
x <- factor(x, levels = names(renaming), labels = renaming)
print(table(x))
df_round[, covs_to_recode[i]] <- x
}
}
# Recoding continuous to categorical
covs_to_recode <- getSheetNames(recoding_from_cont_file)
covs_to_recode <- intersect(names(covs_names), covs_to_recode)
if (length(covs_to_recode) > 0) {
for (i in 1:length(covs_to_recode)) {
recoding <- read.xlsx(recoding_from_cont_file, sheet = covs_to_recode[i])
x <- as.numeric(df_round$age)
x <- cut(x, breaks = c(min(x) - 10, recoding[, 1]), labels = recoding[, 2])
print(table(x))
df_round[, covs_to_recode[i]] <- x
}
}
# Specific recoding for r14/r15
if ("7+" %in% df_round$hh_size_cat) {
df_round$hh_size_cat <- factor(df_round$hh_size_cat,
levels = c(1:6, "7+"),
labels = c(1:5, "6+", "6+")
)
} else {
df_round$hh_size_cat <- factor(df_round$hh_size_cat,
levels = c(1:5, "6+"),
labels = c(1:5, "6+")
)
}
# Make the prevalence tables for the above covariates using Vivi's code (unweighted)
system.time({
mytable <- ExtractPrevalence(
df_round = df_round,
covs = covs, covs_names = covs_names,
res_param = res_param, weighted = FALSE
)
})
if (weighted) {
system.time({
mytable_weighted <- ExtractPrevalence(
df_round = df_round,
covs = covs, covs_names = covs_names,
res_param = res_param,
weight_params = weight_params, weighted = TRUE
)
})
tmp <- mytable
tmp[rownames(mytable_weighted), 5] <- mytable_weighted[, 3]
mytable <- cbind(mytable, tmp[, 5])
}
# Loading template
wb <- loadWorkbook(template_file)
# Checking consistency with template
template_required <- NULL
for (sheet_id in c(1, 2)) {
print(sheet_id)
# Reading template
mysheetname <- eval(parse(text = paste0("template_sheet", sheet_id)))
mysheet <- readWorkbook(template_file,
sheet = mysheetname
)
# Removing legend
mysheet <- mysheet[!grepl("^\\*", mysheet[, 1]), ]
rownames(mysheet) <- paste0(
ExtendList(mysheet[, 1]),
"_",
mysheet[, 2]
)
template_required <- c(template_required, rownames(mysheet))
# Checking that all variables are consistent
if (any(!rownames(mysheet) %in% rownames(mytable))) {
stop(paste0(
"Inconsistencies in variable names: ",
paste(rownames(mysheet)[!rownames(mysheet) %in% rownames(mytable)],
collapse = " ; "
)
))
}
filled_sheet <- mysheet
if (weighted) {
filled_sheet[, 3:6] <- mytable[rownames(filled_sheet), 3:6]
} else {
filled_sheet[, 3:5] <- mytable[rownames(filled_sheet), 3:5]
}
print(filled_sheet)
# Checking that all observations are available for all variables
mytotal <- sum(!is.na(df_round[,res_param]))
ids <- which(!duplicated(ExtendList(filled_sheet$Variable)))
ids <- c(ids, nrow(filled_sheet) + 1)
for (i in 1:(length(ids) - 1)) {
mysum <- sum(as.numeric(gsub(",", "", filled_sheet$Total))[seq(ids[i], ids[i + 1] - 1)])
if (mysum != mytotal) {
stop(paste0(
"Missing some observations for variable ",
unique(na.exclude(filled_sheet$Variable))[i]
))
}
}
# Updating the sheet
writeData(wb, sheet = mysheetname, x = filled_sheet, colNames = FALSE, startRow = 2)
}
# Resizing the cells
for (sheet_id in c(1, 2)) {
tmpsheet <- readWorkbook(template_file, sheet = sheet_id)
# Setting column widths
removeColWidths(wb,
sheet = sheet_id,
cols = seq(3, ncol(filled_sheet))
)
setColWidths(wb,
sheet = sheet_id,
cols = seq(3, ncol(filled_sheet)),
widths = column_widths,
ignoreMergedCells = TRUE
)
# Setting row heights
removeRowHeights(wb,
sheet = sheet_id,
rows = seq(1, nrow(tmpsheet) + 1)
)
setRowHeights(wb,
sheet = sheet_id,
rows = seq(1, nrow(tmpsheet) + 1),
heights = row_height
)
}
# Checking that all strata were in template
if (!all(rownames(mytable) %in% template_required)) {
stop(paste0(
"Stratifications not in template: ",
paste(rownames(mytable)[!rownames(mytable) %in% template_required],
collapse = " ; "
)
))
}
# Saving updated workbook
saveWorkbook(wb,
file = paste0(output_file, "_r", round_id, "_", output_tag, ".xlsx"),
overwrite = TRUE
)
# Copying output to transfer folder
if (direct_export) {
file.copy(
from = paste0(output_file, "_r", round_id, "_", output_tag, ".xlsx"),
to = "T:/", overwrite = TRUE
)
}
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.