rm(list = ls(all = TRUE))
setwd("E:/Group/report/round16/Scripts/")
# Loading required packages
source("functions/load_packages.R")
pkgs <- c(
"prevalence", "mgcv", "mgcViz", "MASS", "dplyr",
"tidyr", "forcats", "ggplot2", "qpcR", "survey", "reshape2",
"openxlsx", "colorspace"
)
load_packages(pkgs)
# Source any functions from the local file
source("functions/add_conf_ints.R")
source("functions/make_tables.R")
source("functions/overall_prev.R")
source("functions/formatting_functions.R")
## Parametrisation
# Paths to files
round_id <- 16
data_file <- paste0("E:/Group/saved_objects/rep", round_id, "_flu.rds")
output_file <- "E:/Group/report/round16/Tables/Prevalence_influenza"
output_tag <- Sys.Date()
annot_file <- "E:/Group/report/round16/Parameters/Variable_names.xlsx"
recoding_file <- "E:/Group/report/round16/Parameters/Recoding.xlsx"
recoding_from_cont_file <- "E:/Group/report/round16/Parameters/Recoding_from_continuous.xlsx"
# Modelling options
weighted <- FALSE # whether weighted prevalences should be included or not
# Copying output files directly to transfer folder
direct_export <- TRUE
# Variable for test results
res_param <- "estbinres"
# Variable for weights
if (weighted) {
weight_params <- c("id", "lacode", "wt_antigen")
names(weight_params) <- c("id", "strata", "weights")
} else {
weight_params <- NULL
}
# Updating output file name
if (weighted) {
output_file <- paste0(output_file, "_weighted")
} else {
output_file <- paste0(output_file, "_unweighted")
}
# Variables for stratification
covs <- c(
"gender_char", "age", "region",
"work_new_alt", "ethnic_new_char",
"hh_size_cat", "covidcon_char", "sympt_cat",
"nchild2",
"imd_quintile", "vax_status_noDate_v2",
"influenzaa", "influenzab", "influenza",
"ct1", "ct2",
"res",
"influenzaacpvalue", "influenzabcpvalue",
"fluvacc"
)
## Loading and preparing the data
# Loading the data
df_round <- data.frame(readRDS(data_file))
rownames(df_round)=df_round$u_passcode
# Adding variable introduced in round 15
if (!"vax_status_noDate_v2" %in% colnames(df_round)) {
df_round$vax_status_noDate_v2 <- df_round$vax_status_noDate
}
# Recoding influenza infection
for (mytest in c("influenzaa", "influenzab")){
df_round[,mytest]=as.numeric(as.character(factor(df_round[,mytest],
levels=c("negative", "positive"),
labels=c(0,1))))
}
df_round$influenza=ifelse(df_round$influenzaa+df_round$influenzab>0, yes=1, no=0)
# Removing missing in flu test results
df_round <- df_round %>%
filter(!is.na(influenzaa)) %>%
mutate(group = "Overall")
df_round <- df_round %>%
filter(!is.na(influenzab)) %>%
mutate(group = "Overall")
if (weighted) {
# Removing missing in weights
df_round <- df_round %>% filter(!is.na(wt_antigen))
}
df_round <- df_round %>%
mutate(vax_status_cat = ifelse(is.na(vax_status_cat), "NA", vax_status_cat)) %>%
# mutate(
# vax_wane = ifelse(is.na(vax_wane), "NA", vax_wane),
# rm_dip = ifelse(rm_dip==-1, "NA", rm_dip),
# rm_dip2 = case_when(rm_dip == 1 ~ "1",
# rm_dip == 2 ~ "2",
# rm_dip %in% c(3:12) ~ "3+",
# rm_dip == "NA" ~ "NA")) %>%
mutate(
# vax_status_cat = factor(vax_status_cat, levels = c("Not vaccinated", "One does", "Two does",
# "Unknown does", "NA")),
# vax_wane = factor(vax_wane, levels = c("Unvaccinated", "1 dose", "2 dose < 3 months", "2 dose 3-6 months",
# "2 dose > 6 months", "NA")),
vax_status_noDate = factor(vax_status_noDate, levels = c(
"Not vaccinated", "One does", "Two does",
"Unknown does", "NA"
)),
vax_status_noDate_v2 = factor(vax_status_noDate_v2, levels = c(
"Not vaccinated", "One does", "Two does",
"Three does", "Unknown does", "NA"
))
) %>%
mutate(covidcon_char = ifelse(is.na(covidcon_char), "NA", as.character(covidcon_char))) %>%
mutate(covidcon_char = factor(covidcon_char,
levels = c(
"Yes, contact with confirmed/tested COVID-19 case",
"Yes, contact with suspected COVID-19 case",
"No", "NA"
)
))
# Extracting covariate names
tmp <- read.xlsx(annot_file)
covs_names <- tmp[, 2]
names(covs_names) <- tmp[, 1]
covs_names <- covs_names[covs]
# Removing unused variables
df_round <- df_round[, c(res_param, covs, weight_params)]
# Recoding categorical variables
covs_to_recode <- getSheetNames(recoding_file)
covs_to_recode <- intersect(names(covs_names), covs_to_recode)
if (length(covs_to_recode) > 0) {
for (i in 1:length(covs_to_recode)) {
recoding <- read.xlsx(recoding_file, sheet = covs_to_recode[i])
recoding[which(is.na(recoding[, 1])), 1] <- "NA"
renaming <- recoding[, 2]
names(renaming) <- recoding[, 1]
x <- as.character(df_round[, covs_to_recode[i]])
print(table(x))
x[is.na(x)] <- "NA"
x <- factor(x, levels = names(renaming), labels = renaming)
print(table(x))
df_round[, covs_to_recode[i]] <- x
}
}
# Recoding continuous to categorical
covs_to_recode <- getSheetNames(recoding_from_cont_file)
covs_to_recode <- intersect(names(covs_names), covs_to_recode)
if (length(covs_to_recode) > 0) {
for (i in 1:length(covs_to_recode)) {
recoding <- read.xlsx(recoding_from_cont_file, sheet = covs_to_recode[i])
x <- as.numeric(df_round$age)
x <- cut(x, breaks = c(min(x) - 10, recoding[, 1]), labels = recoding[, 2])
print(table(x))
df_round[, covs_to_recode[i]] <- x
}
}
# Creating combinations of outcomes
df_round$influenzaa <- as.numeric(as.character(df_round$influenzaa))
df_round$influenzab <- as.numeric(as.character(df_round$influenzab))
df_round$covid_and_flua <- ifelse(df_round$estbinres + df_round$influenzaa == 2,
yes = 1, no = 0
)
df_round$covid_and_flub <- ifelse(df_round$estbinres + df_round$influenzab == 2,
yes = 1, no = 0
)
df_round$flu <- ifelse(df_round$influenzaa + df_round$influenzab >= 1,
yes = 1, no = 0
)
df_round$covid_and_flu <- ifelse(df_round$estbinres + df_round$flu == 2,
yes = 1, no = 0
)
df_round$flua_and_flub <- ifelse(df_round$influenzaa + df_round$influenzab == 2,
yes = 1, no = 0
)
df_round$covid_and_flua_and_flub <- ifelse(df_round$estbinres + df_round$influenzaa + df_round$influenzab == 3,
yes = 1, no = 0
)
df_round$any_sympt=factor(df_round$sympt_cat,
levels=c("Classic COVID symptoms",
"Other symptoms",
"No symptoms",
"Unknown"),
labels=c("S+","S+","S-","S?"))
df_round$fluvacc=factor(df_round$fluvacc,
levels=c("Yes", "No", "Unknown"),
labels=c("V+", "V-", "V?"))
df_round$vacc_and_sympt=paste0(as.character(df_round$fluvacc),
"/",
as.character(df_round$any_sympt))
df_round$vacc_and_sympt=factor(df_round$vacc_and_sympt,
levels=c("V+/S-", "V+/S+", "V+/S?",
"V-/S-", "V-/S+", "V-/S?",
"V?/S-", "V?/S+", "V?/S?"))
df_round$age_binary=ifelse(df_round$age%in%c("05-12", "13-17"),
yes="<18", no="18+")
df_round_full=df_round
for (sheet in 1:2){
{
pdf(paste0("../Figures/Ct_values_infection_influenza_A_B_sep_sheet_",sheet,"_", Sys.Date(), ".pdf"), width = 12, height = 7)
par(mfrow = c(1, 2), mar = c(5, 5, 7, 1))
for (ct_outcome in c("influenzaacpvalue", "influenzabcpvalue")) {
mylist <- list()
df_round=df_round_full
mydata=read.xlsx("../Data/FLU Confirmation Results 2021 01 03.xlsx", sheet = sheet)
myu_passcode=mydata$Sample.Name
myu_passcode=gsub("UK", "", gsub(" \\(.*", "", myu_passcode))
df_round=df_round[myu_passcode,]
# Negative to flu
ids <- which(df_round[, gsub("cpvalue", "", ct_outcome)] == 0)
mylist <- c(mylist, list(df_round[ids, ct_outcome]))
# Positive to flu
ids <- which(df_round[, gsub("cpvalue", "", ct_outcome)] == 1)
mylist <- c(mylist, list(df_round[ids, ct_outcome]))
N0 <- formatC(sapply(mylist, FUN = function(x) {
sum(round(x, digits = 4) == 0)
}),
format = "f", digits = 0, big.mark = ","
)
mylist <- lapply(mylist, FUN = function(x) {
x[which(round(x, digits = 4) != 0)]
})
names(mylist) <- c("Negative", "Positive")
names(mylist) <- paste0(
names(mylist), "\n (N=",
formatC(sapply(mylist, length), format = "f", digits = 0, big.mark = ","), ")"
)
mycolours <- lighten(c("grey30", "darkred"), amount = 0.5)
plot(NULL, xlim=c(0.5,2.5), ylim=c(0, 50), xlab="", ylab="", xaxt="n", yaxt="n",
panel.first=c(abline(h=seq(0,50), lty=3, col="grey"),
abline(h=seq(0,50,by=5), lty=1, col="grey")))
boxplot(mylist,
range = 0,
boxcol = "white", col = mycolours,
staplecol = mycolours, whiskcol = mycolours, lty = 1,
las = 1, cex.axis = 1.5, cex.main = 2, xaxt = "n", ylim = c(0, 50),
main = paste0(
"Influenza ",
ifelse(ct_outcome == "influenzaacpvalue", yes = "A", no = "B"), " infection"
),
ylab = paste0(
"Cp values (influenza ",
ifelse(ct_outcome == "influenzaacpvalue", yes = "A", no = "B"), ")"
),
cex.lab = 2, add = TRUE
)
set.seed(1)
for (i in 1:length(mylist)) {
if (length(mylist[[i]]) > 0) {
points(i + ProportionalJitter(mylist[[i]]), mylist[[i]],
pch = 19, cex = 0.5,
col = "darkred"
)
}
}
axis(side = 1, at = 1:length(mylist), labels = NA)
axis(
side = 1, at = 1:length(mylist), labels = names(mylist),
line = 2, cex.axis = 1.5, tick = FALSE
)
axis(
side = 3, at = 1:length(mylist),
# labels = paste0("N0=", N0),
labels=unlist(sapply(N0, FUN=function(x){eval(parse(text=paste0("expression(N['Cp=0']*'=",x, "')")))})),
line = -0.5, cex.axis = 1.5, tick = FALSE
)
}
dev.off()
}
}
# Copying output to transfer folder
myfiles=list.files("../Figures", pattern = as.character(Sys.Date()))
if (direct_export) {
for (i in 1:length(myfiles)){
file.copy(
from = paste0("../Figures/", myfiles[i]),
to = "T:/", overwrite = TRUE
)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.