context("calibration")
#------------------------------------------------
test_that("calibrate particle works", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.6
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
set.seed(93L)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
expect_named(out, c("output","parameters","model","interventions","scan_results","replicate_parameters"))
expect_s3_class(plot(out$scan_results, log = TRUE), "gg")
expect_s3_class(plot(out$scan_results), "gg")
expect_s3_class(plot(out$scan_results, what = "probability", log = FALSE), "gg")
expect_s3_class(plot(out$scan_results, what = "probability", log = TRUE), "gg")
expect_warning(expect_s3_class(plot(out, what = "cases", particle_fit = TRUE), "gg"))
expect_warning(expect_s3_class(plot(out, what = "deaths", particle_fit = TRUE), "gg"))
expect_error(plot(out, what = "rubbish", particle_fit = TRUE),"must be one of")
# DATE CHECKS DATE_R0
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = "2020-03-01",
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
))
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = last_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
))
# DATE CHECKS DATE_CONTACT
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
contact_matrix_set = list(contact_matrices[[1]]),
date_contact_matrix_set_change = date_R0_change[1],
replicates = replicates,
country = country,
forecast = 0
), "baseline_contact_matrix can")
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
baseline_contact_matrix = contact_matrices[[1]],
contact_matrix_set = list(contact_matrices[[1]]),
date_contact_matrix_set_change = date_R0_change[1],
replicates = replicates,
country = country,
forecast = 0
)
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
hosp_bed_capacity = 10,
date_hosp_bed_capacity_change = date_R0_change[1],
replicates = replicates,
country = country,
forecast = 0
), "baseline_hosp_bed_capacity can")
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
baseline_hosp_bed_capacity = 5,
hosp_bed_capacity = 10,
date_hosp_bed_capacity_change = date_R0_change[1],
replicates = replicates,
country = country,
forecast = 0
)
# DATE CHECKS DATE_ICU
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
baseline_ICU_bed_capacity = 10,
ICU_bed_capacity = 100,
date_ICU_bed_capacity_change = "2020-05-10",
replicates = replicates,
country = country,
forecast = 0
))
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
ICU_bed_capacity = 10,
date_ICU_bed_capacity_change = date_R0_change[1],
replicates = replicates,
country = country,
forecast = 0
), "baseline_ICU_bed_capacity can")
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
baseline_ICU_bed_capacity = 5,
ICU_bed_capacity = 10,
date_ICU_bed_capacity_change = date_R0_change[1],
replicates = replicates,
country = country,
forecast = 0
)
})
#------------------------------------------------
test_that("calibrate non future works", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 0.00001
R0_max = 0.00001
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
Sys.setenv("SQUIRE_PARALLEL_DEBUG"=TRUE)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
})
#------------------------------------------------
test_that("calibrate deterministic", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.6
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = deterministic_model(),
pars_obs = pars_obs,
n_particles = 2,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
expect_true(inherits(out$scan_results$inputs$squire_model, "deterministic"))
expect_error(get <- projections(out), "projections needs either time")
get <- projections(out, time_period = 5)
})
test_that("calibrate user pop and contact", {
pop <- get_population("Nigeria")
mat <- get_mixing_matrix("Nigeria")*0.9
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.6
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
baseline_contact_matrix = mat,
replicates = replicates,
population = pop$n,
forecast = 0
)
expect_true(
identical(out$scan_results$inputs$model_params$contact_matrix_set[[1]], mat)
)
})
#------------------------------------------------
test_that("calibrate dt not playing with day stepping well", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.6
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
replicates = replicates,
country = "Algeria",
forecast = 0,
dt = 0.61
), "must result in an integer")
})
#------------------------------------------------
test_that("calibrate 3d particle works", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.7
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
Meff_min = 0.1
Meff_max = 1.8
Meff_step = 0.8
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
Sys.setenv("SQUIRE_PARALLEL_DEBUG"=FALSE)
set.seed(93L)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = Meff_min,
Meff_max = Meff_max,
Meff_step = Meff_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
Rt_func = function(R0_change, R0, Meff) {R0_change*Meff*R0},
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
expect_s3_class(plot(out$scan_results), "gg")
expect_s3_class(plot(out$scan_results, what = "probability"), "gg")
expect_s3_class(plot(out$scan_results, what = "probability", show = c(1,3)), "gg")
expect_s3_class(plot(out$scan_results, what = "probability", show = c(2,3)), "gg")
expect_s3_class(plot(out$scan_results, show = c(2,3)), "gg")
expect_true(which.max(apply(out$scan_results$mat_log_ll,3,sum))==2)
})
#------------------------------------------------
test_that("calibrate 3d non future works", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.7
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
Meff_min = 0.5
Meff_max = 1
Meff_step = 0.5
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
set.seed(93L)
Sys.setenv("SQUIRE_PARALLEL_DEBUG"=TRUE)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = Meff_min,
Meff_max = Meff_max,
Meff_step = Meff_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
expect_is(out,"squire_simulation")
Sys.setenv("SQUIRE_PARALLEL_DEBUG"=FALSE)
})
#------------------------------------------------
test_that("R0 and Meff arge checking", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.7
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
Meff_min = 0.5
Meff_max = 1
Meff_step = 0.5
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 2
set.seed(93L)
expect_error(out <- calibrate(
data = data,
R0_min = 2,
R0_max = 1.5,
R0_step = R0_step,
Meff_min = Meff_min,
Meff_max = Meff_max,
Meff_step = Meff_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
), "must be greater")
expect_error(out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = 2,
Meff_max = 1,
Meff_step = Meff_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
), "must be greater")
})
#------------------------------------------------
test_that("reporting fraction into pars_obs", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.6
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs <- list(phi_cases = 1,
k_cases = 2,
phi_death = 1,
k_death = 2,
exp_noise = 1e6)
n_particles = 5
set.seed(93L)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = 0.1,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
set.seed(93L)
out2 <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = 1,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
expect_true(all(out2$replicate_parameters$R0 == out$replicate_parameters$R0))
})
#------------------------------------------------
test_that("date_changes before last start date", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
data <- data[which(data$deaths>0)[1]:nrow(data),]
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.6
R0_step = 0.1
first_start_date = "2020-03-04"
last_start_date = "2020-03-05"
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_R0_change[1] <- date_R0_change[1] - 8
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 5
set.seed(93L)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = 0.1,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
date_R0_change[2] <- "2020-03-05"
out2 <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = 0.1,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
})
#------------------------------------------------
test_that("R0_prior", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
data <- data[which(data$deaths>0)[1]:nrow(data),]
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
country = "Algeria"
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
replicates = 2
R0_min = 1.5
R0_max = 4.5
R0_step = 1
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 5
set.seed(93L)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
R0_prior = list("func" = dnorm, "args"=list("mean"=2.5,"sd"=0.5,"log"=TRUE)),
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
out2 <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
R0_prior = list("func" = dnorm, "args"=list("mean"=0.1,"sd"=0.01,"log"=TRUE)),
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
out3 <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = 0.9,
Meff_max = 1,
Meff_step = 0.1,
R0_prior = list("func" = dnorm, "args"=list("mean"=0.1,"sd"=0.01,"log"=TRUE)),
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
get <- lapply(list(out,out2, out3), format_output, "deaths")
expect_true(max(get[[1]]$y,na.rm=TRUE) > max(get[[2]]$y,na.rm=TRUE))
expect_true(max(get[[1]]$y,na.rm=TRUE) > max(get[[3]]$y,na.rm=TRUE))
})
#------------------------------------------------
test_that("Rt_func", {
data <- read.csv(squire_file("extdata/example.csv"),stringsAsFactors = FALSE)
interventions <- read.csv(squire_file("extdata/example_intervention.csv"))
int_unique <- interventions_unique(interventions)
reporting_fraction = 1
country = "Algeria"
replicates = 2
R0_min = 2.6
R0_max = 2.7
R0_step = 0.1
first_start_date = "2020-02-01"
last_start_date = "2020-02-02"
Meff_min = 0.6
Meff_max = 0.7
Meff_step = 0.05
day_step = 1
R0_change = int_unique$change
date_R0_change = as.Date(int_unique$dates_change)
date_contact_matrix_set_change = NULL
squire_model = explicit_model()
pars_obs = NULL
n_particles = 10
set.seed(93L)
out <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = 1.5,
Meff_max = 2.5,
Meff_step = 0.5,
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = pars_obs,
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
out2 <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = 1.5,
Meff_max = 2.5,
Meff_step = 0.5,
Rt_func = function(R0_change, R0, Meff){R0_change*Meff*R0},
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = list(phi_cases = 1,
k_cases = 2,
phi_death = 1,
k_death = 30,
exp_noise = 1e6),
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
out3 <- calibrate(
data = data,
R0_min = R0_min,
R0_max = R0_max,
R0_step = R0_step,
Meff_min = 1,
Meff_max = 1.1,
Meff_step = Meff_step,
Rt_func = function(R0_change, R0, Meff){R0_change*Meff*R0},
first_start_date = first_start_date,
last_start_date = last_start_date,
day_step = day_step,
squire_model = squire_model,
pars_obs = list(phi_cases = 1,
k_cases = 2,
phi_death = 1,
k_death = 30,
exp_noise = 1e6),
n_particles = n_particles,
reporting_fraction = reporting_fraction,
R0_change = R0_change,
date_R0_change = date_R0_change,
replicates = replicates,
country = country,
forecast = 0
)
expect_gt(mean(out$scan_results$mat_log_ll),mean(out2$scan_results$mat_log_ll))
expect_gt(mean(out3$scan_results$mat_log_ll),mean(out2$scan_results$mat_log_ll))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.