R/stat_ellipse_byFox.R

#' Plot data ellipses.
#'
#' @param level The confidence level at which to draw an ellipse (default is 0.95),
#'   or, if \code{type="euclid"}, the radius of the circle to be drawn.
#' @param type The type of ellipse.
#'   The default \code{"t"} assumes a multivariate t-distribution, and
#'   \code{"norm"} assumes a multivariate normal distribution.
#'   \code{"euclid"} draws a circle with the radius equal to \code{level},
#'   representing the euclidian distance from the center.
#'   This ellipse probably won't appear circular unless \code{coord_fixed()} is applied.
#' @param segments The number of segments to be used in drawing the ellipse.
#' @param na.rm If \code{FALSE} (the default), removes missing values with
#'   a warning.  If \code{TRUE} silently removes missing values.
#' @inheritParams stat_identity
#'
#' @details The method for calculating the ellipses has been modified from car::ellipse (Fox and Weisberg, 2011)
#'
#' @references
#' John Fox and Sanford Weisberg (2011). An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. URL: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
#'
#' @export
#' @importFrom MASS cov.trob
#'
#' @examples
#' ggplot(faithful, aes(waiting, eruptions))+
#'   geom_point()+
#'   stat_ellipse()
#'
#' ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3))+
#'   geom_point()+
#'   stat_ellipse()
#'
#' ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3))+
#'   geom_point()+
#'   stat_ellipse(type = "norm", linetype = 2)+
#'   stat_ellipse(type = "t")
#'
#' ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3))+
#'   geom_point()+
#'   stat_ellipse(type = "norm", linetype = 2)+
#'   stat_ellipse(type = "euclid", level = 3)+
#'   coord_fixed()
#'
#' ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3))+
#'   stat_ellipse(geom = "polygon")
# 
# stat_ellipse <- function(mapping = NULL, data = NULL, geom = "path", position = "identity", type = "t", level = 0.95, segments = 51, na.rm = FALSE, ...) {
#   StatEllipse$new(mapping = mapping, data = data, geom = geom, position = position, type = type, level = level, segments = segments, na.rm = na.rm, ...)
# }
# 
# StatEllipse <- proto(Stat, {
#   objname <- "ellipse"
#   
#   required_aes <- c("x", "y")
#   default_geom <- function(.) GeomPath
#   
#   calculate_groups <- function(., data, scales, ...){
#     .super$calculate_groups(., data, scales,...)
#   }
#   calculate <- function(., data, scales, type = "t", level = 0.95, segments = 51, na.rm = FALSE, ...){
#     data <- remove_missing(data, na.rm, vars = c("x","y"), name = "stat_ellipse", finite = TRUE)
#     ellipse <- calculate_ellipse(data=data, vars= c("x","y"), type=type, level=level, segments=segments)
#     return(ellipse)
#   }
# })
# 
# calculate_ellipse <- function(data, vars, type, level, segments){
#   dfn <- 2
#   dfd <- nrow(data) - 1
#   
#   if (!type %in% c("t", "norm", "euclid")){
#     message("Unrecognized ellipse type")
#     ellipse <- rbind(as.numeric(c(NA, NA)))
#   } else if (dfd < 3){
#     message("Too few points to calculate an ellipse")
#     ellipse <- rbind(as.numeric(c(NA, NA)))
#   } else {
#     if (type == "t"){
#       v <- cov.trob(data[,vars])
#     } else if (type == "norm"){
#       v <- cov.wt(data[,vars])
#     } else if (type == "euclid"){
#       v <- cov.wt(data[,vars])
#       v$cov <- diag(rep(min(diag(v$cov)), 2))
#     }
#     shape <- v$cov
#     center <- v$center
#     chol_decomp <- chol(shape)
#     if (type == "euclid"){
#       radius <- level/max(chol_decomp)
#     } else {
#       radius <- sqrt(dfn * qf(level, dfn, dfd))
#     }
#     angles <- (0:segments) * 2 * pi/segments
#     unit.circle <- cbind(cos(angles), sin(angles))
#     ellipse <- t(center + radius * t(unit.circle %*% chol_decomp))
#   }
#   
#   ellipse <- as.data.frame(ellipse)
#   colnames(ellipse) <- vars
#   return(ellipse)
# }
mssm-msf-2019/BiostatsALL documentation built on May 22, 2019, 12:16 p.m.