# Check diverging palette
#
# Check diverging palette. It computes two quality indices. \code{inter_wing_dist} minimal distance between from one wing (any color) to the other wing (any color); let a step be the distance from one color to a neighboring color, then: \code{min_step} is the minimal step. These two quality indices are computed for all three color vision deficiency types: per quality indicator, the worst score is returned.
#
# @param p diverging palette with odd number of colors (so with a middle color)
# @return vector of three quality indices
check_div_pal = function(p) {
n = length(p)
is_even = ((n %% 2) != 1)
nh = floor(n/2)
# needed for inter_wing_dist
# 1 2 3 4 5 6 7
# create two wings of n2/2
n2 = 50
p2 = c(rampPal(p[1:(nh+1) ], n2/2), rampPal(p[(nh+(!is_even)):n], n2/2))
# left wing: 1...nh1_scaled, right wing nh2_scaled ... n2
nh1 = (n - is_even) / 2
nh2 = nh1 + 1 + is_even
nh1b = floor(nh1)
nh2b = ceiling(nh2)
scale = function(id) ((id - 1) / (n - 1)) * (n2 - 1) + 1
nh1_scaled = floor(scale(nh1))
nh2_scaled = ceiling(scale(nh2))
nh1b_scaled = floor(scale(nh1b))
nh2b_scaled = ceiling(scale(nh2b))
cvds = c("deutan", "protan", "tritan")
scores = t(sapply(cvds, function(cvd) {
inter_wing_dist = local({
dm = get_dist_matrix(p2, cvd = cvd)
min(dm[1:nh1b_scaled, nh2_scaled:n2])
min(dm[1:nh1_scaled, nh2b_scaled:n2])
})
dm = get_dist_matrix(p, cvd = cvd)
step_sizes = diag(dm[1:(n-1), 2:n])
step2_sizes = diag(dm[1:(n-2), 3:n])
# should be positive
step12a = step2_sizes - step_sizes[1:(n-2)]
step12b = step2_sizes - step_sizes[2:(n-1)]
min_step_size = min(step_sizes)
tri_ineq = min(step12a, step12b)
c(inter_wing_dist = round(inter_wing_dist * 100), min_step = round(min_step_size * 100), tri_ineq = round(tri_ineq * 100))
}))
inter_wing_dist = min(scores[,1])
min_step = min(scores[,2])
tri_ineq = min(scores[,3])
sc = as(c(inter_wing_dist = inter_wing_dist, min_step = min_step, tri_ineq = tri_ineq), "integer")
prop = hcl_prop(p)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
check_bivs_pal = function(p) {
if (nrow(p) != ncol(p)) {
stop("ncol != nrow", call. = FALSE)
}
p1 = p[1,]
p2 = p[,1]
pd = diag(p)
#if (nrow(p) == 5) browser()
x12 = check_div_pal(c(rev(p1[-1]), p2))
x1d = check_div_pal(c(rev(p1[-1]), pd))
x2d = check_div_pal(c(rev(p2[-1]), pd))
sc = pmin(x12, x1d, x2d)[1:2]
p2 = c(as.vector(p[lower.tri(p)]), p[1,1], as.vector(p[upper.tri(p)]))
prop = hcl_prop(p2)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
check_bivc_pal = function(p) {
nr = nrow(p)
res = lapply(1L:nr, function(i) {
check_cat_pal(p[i, ])
})
sc = do.call(pmin, res)[1:2]
p2 = as.vector(p)
prop = hcl_prop(p2)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
check_bivd_pal = function(p) {
# if (ncol(p) %% 2 == 0) {
# stop("ncol should be odd", call. = FALSE)
# }
c1 = 1
c3 = ncol(p)
c2 = (c1+c3)/2
x13 = check_div_pal(c(rev(p[,c1]), "#FFFFFF", p[,c3]))
x12 = check_div_pal(c(rev(p[,c1]), "#FFFFFF", p[,c2]))
x23 = check_div_pal(c(rev(p[,c2]), "#FFFFFF", p[,c3]))
sc = pmin(x12, x13, x23)[1:2]
p2 = c(rev(p[, 1]), p[1, round((ncol(p)+1)/2)], p[, ncol(p)])
prop = hcl_prop(p2)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
check_bivg_pal = function(p) {
sc = check_div_pal(c(rev(p[,1]), "#FFFFFF", p[,ncol(p)]))[1:2]
p2 = c(rev(p[, 1]), p[1, round((ncol(p)+1)/2)], p[, ncol(p)])
prop = hcl_prop(p2)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
# Check sequential palette
#
# Check sequential palette. It computes two quality indices. \code{min_step} and \code{max_step} are the minimum and maximum step respectively, where a step is the distance from one color to a neighboring color. \code{min_step} is the leading indicator: the higher, the better the palette. From palettes with equal \code{min_step}, those with the lowest \code{max_step} can be considered as better, because the steps are more uniform. These two quality indices are computed for all three color vision deficiency types: per quality indicator, the worst score is returned.
#
# and \code{max_step} is low, although the former is much more important.
#
# @param p sequential palette
# @return vector of three quality indices
check_seq_pal = function(p) {
n = length(p)
cvds = c("deutan", "protan", "tritan")
scores = t(sapply(cvds, function(cvd) {
m = get_dist_matrix(p, cvd = cvd)
step_sizes = diag(m[1:(n-1), 2:n])# mapply(function(i,j) m[i,j], 1:(n-1), 2:n)
min_step_size = min(step_sizes)
max_step_size = max(step_sizes)
#mean_step_size = mean(step_sizes)
#step_indicator = max(abs(step_sizes - mean_step_size)) / mean_step_size
min_dist = min(m, na.rm = TRUE)
if (n > 2) {
step2_sizes = diag(m[1:(n-2), 3:n])
# should be positive
step12a = step2_sizes - step_sizes[1:(n-2)]
step12b = step2_sizes - step_sizes[2:(n-1)]
tri_ineq = min(step12a, step12b)
} else {
tri_ineq = 100
}
c(min_step = round(min_step_size * 100), max_step = round(max_step_size * 100), min_dist = round(min_dist * 100), tri_ineq = round(tri_ineq * 100))
}))
sc = as(c(min_step = min(scores[,1]), max_step = min(scores[,2]), min_dist = min(scores[,3]), tri_ineq = min(scores[,4])), "integer")
prop = hcl_prop(p)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
# Check cyclic palette
#
check_cyc_pal = function(p) {
if (p[1] != tail(p,1)) stop("first color should be equal to last color")
check_seq_pal(head(p, -1))
}
# Check categorical palette
#
# Check categorical palette. It computes one quality indicator: the \code{min_dist}, the minimal distance between any two colors. This is computed for all three color vision deficiency types: the worst (i.e. lowest) score is returned.
check_cat_pal = function(p) {
if (length(p) == 1) return(c(min_dist = Inf))
cvds = c("deutan", "protan", "tritan")
scores = sapply(cvds, function(cvd) {
get_dist_matrix(p, cvd = cvd)
})
sc = c(min_dist = as.integer(round(min(scores, na.rm = TRUE) * 100)), nameability = as.integer(nameability(p)))
prop = hcl_prop(p)
rgb = rgb_prop(p)
c(sc, prop, rgb)
}
is_light <- function(col) {
colrgb <- col2rgb(col)
apply(colrgb * c(.299, .587, .114), MARGIN=2, sum) >= 128
}
# get hcl coordinates
get_hcl_matrix = function(p, rounded = FALSE) {
x = as(colorspace::hex2RGB(p), "polarLUV")@coords[,c("H", "C", "L"), drop = FALSE]
if (rounded) round(x) else x
}
get_hc_or_l = function(p, dim = c("H", "C", "L")) {
dim = match.arg(dim)
x = as(colorspace::hex2RGB(p), "polarLUV")@coords[, dim]
}
get_hcl_triple = function(p) {
x = get_hcl_matrix(p, rounded = TRUE)
apply(x, MARGIN = 1, paste, collapse = ",")
}
get_rgb_triple = function(p) {
x = round(colorspace::hex2RGB(p)@coords * 255)
#paste0("(", apply(x, MARGIN = 1, paste, collapse = ", "), ")")
apply(x, MARGIN = 1, paste, collapse = ",")
}
# hue width: h)w far are hues apart from each other?
# method: find largest gap, i.e. hue range for which no hues are present. Hwidth = 360 - gap
get_hue_width = function(hs) {
hs = na.omit(hs)
if (!length(hs)) {
w = 0
h_max = 0
} else {
hs = c(hs, hs + 360)
gap = 0
gap_max = 0
h_max = 0
for (h in 0:720) {
if (any(hs == h)) {
gap = 0
} else {
gap = gap + 1
}
if (gap > gap_max) {
gap_max = gap
h_max = h
}
}
w = round(360 - gap_max)
}
HR = (h_max + w) %% 360
HL = (h_max + 1) %% 360
if (HR < HL) HR = HR + 360
H = (HL + HR) / 2
if (H > 360) H = H - 360
attr(w, "hueR") = HR
attr(w, "hueL") = HL
attr(w, "hue") = H
w
}
# HCL characteristics
# analyse_hcl = function(p, type) {
#
#
# if (type == "bivs") {
# p = c(as.vector(p[lower.tri(p)]), p[1,1], as.vector(p[upper.tri(p)]))
# } else if (type == "bivd") {
# p = c(rev(p[, 1]), p[1, round((ncol(p)+1)/2)], p[, ncol(p)])
# } else if (type == "bivg") {
# p = c(rev(p[, 1]), p[1, round((ncol(p)+1)/2)], p[, ncol(p)])
# } else if (type == "bivc") {
# p = as.vector(p)
# }
#
#
# c(rgb_prop(p), hcl_prop(p))
# }
# approx_wave = function(p) {
# co = unname(t(col2rgb(p)))
# co[rowSums(co) == 0, ] = 1
#
# round((co[,3] * 440 + co[,2] * 540 + co[,1] * 565) / rowSums(co))
# }
approx_blues = function(p) {
co = unname(t(col2rgb(p)))
co[rowSums(co) == 0, ] = 1
round(co[,3] / apply(co[,1:2], MARGIN = 1, max) * 100)
}
approx_reds = function(p) {
co = unname(t(col2rgb(p)))
co[rowSums(co) == 0, ] = 1
round(co[,1] / apply(co[,2:3], MARGIN = 1, max) * 100)
}
rgb_prop = function(p) {
blues = approx_blues(p)
c(Blues = max(blues))
}
hcl_prop = function(p) {
m = get_hcl_matrix(p)
# hue width: how far are hues apart from each other?
h = round(m[,1])
h[m[,2]<=.C4A$Cgray] = NA
Hwidth = get_hue_width(h)
n = length(p)
is_even = ((n %% 2) != 1)
nh = floor(n/2)
hL = h[1:nh]
hR = h[(nh+1+!is_even):n]
Hwidth = get_hue_width(h)
HwidthL = get_hue_width(hL)
HwidthR = get_hue_width(hR)
H = round(attr(Hwidth, "hue"))
HL = round(attr(HwidthL, "hue"))
HR = round(attr(HwidthR, "hue"))
Lmid = unname(round({if (!is_even) m[nh+1, 3] else mean(m[c(nh, nh+1), 3])}))
Cmax = round(max(m[,2]))
Lrange = round(max(m[,3]) - min(m[,3]))
Crange = round(max(m[,2]) - min(m[,2]))
#LCrange = round(max(Lrange * .C4A$LrangeWeight, Crange * (1-.C4A$LrangeWeight)))
CRmin = round(get_CRmin(p) * 100)
CRwt = round(get_CRbg(p, bg = "#ffffff") * 100)
CRbk = round(get_CRbg(p, bg = "#000000") * 100)
as(c(Cmax = Cmax, H = H, HL = HL, HR = HR, Lmid = Lmid, Hwidth = Hwidth, HwidthL = HwidthL, HwidthR = HwidthR, Lrange = Lrange, Crange = Crange, CRmin = CRmin, CRwt = CRwt, CRbk = CRbk), "integer") #LCrange = LCrange,
}
#
# encode = function(x, digits = 0, id1 = 0L, id2 = 0L) {
# as.integer(round(x, digits = digits) * 10^digits + id1 * 10000 + id2 * 1000000)
# }
get_CRbg = function(p, bg = "#ffffff") {
n = length(p)
CRs = sapply(p, function(pi) colorspace::contrast_ratio(pi, bg))
id = which.min(CRs)[1]
unname(CRs[id])
#structure(CRs[id], names = id)
}
get_CRmin = function(p, show.which = FALSE) {
n = length(p)
CRs = sapply(1:(n-1), function(i) {
CRs = sapply(p[(i+1):n], function(pj) colorspace::contrast_ratio(p[i], pj))
id = which.min(CRs)[1]
structure(CRs[id], names = paste(i, id + i, sep = "_"))
})
id = which.min(CRs)[1]
if (show.which) {
message("id:", names(CRs)[id])
ids = as.integer(strsplit(names(CRs)[id], split = "_", fixed = TRUE)[[1]])
c4a_plot_Plus_Reversed(p[ids[1]], p[ids[2]])
}
unname(CRs[id])
#structure(CRs[id], ids = strsplit(names(CRs[id]), split = "_", fixed = TRUE))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.