c4a_naming_matrix = function(pal) {
do.call(.C4A$naming_fun, c(list(pal = pal), .C4A$naming_fun_args))
}
c4a_naming_matrix_softmax = function(pal, a = NA, th = NA) {
m = c4a_naming_matrix(pal)
if (is.na(a)) a = .C4A$naming_softmax$a
if (is.na(th)) th = .C4A$naming_softmax$th
matrix_softmax(m, a = a, th = th)
}
nameability = function(pal, a = NA, th = NA) {
if (is.na(a)) a = .C4A$naming_softmax$a
if (is.na(th)) th = .C4A$naming_softmax$th
s = c4a_naming_matrix_softmax(pal, a = a, th = th)
s[s>0] = 1
max(colSums(s)) <= 1 && max(rowSums(s)) <= 1
}
name_max = function(pal) {
m = c4a_naming_matrix(pal)
apply(m, which.min, MARGIN = 1)
}
## method 1: difference to color centroids (e.g. boynton colors)
naming_dist_centroid = function(pal, weights) {
m = diff_matrix(pal, .C4A$naming_colors)
}
diff_matrix = function(x, y) {
xLAB = hex2LAB(x)
yLAB = hex2LAB(y)
t(apply(xLAB, MARGIN = 1, FUN = function(col) {
spacesXYZ::DeltaE(col, yLAB, metric = "2000")
}))
}
hex2LAB = function(x) {
methods::as(colorspace::hex2RGB(x), "LAB")@coords
}
matrix_softmax = function(m, a, th) {
s = t(apply(m, MARGIN = 1, softmax, a = a, simplify = T))
s[s<th] = 0
s
}
softmax = function(x, a = 1) {
e = exp(1)
ex = e^(-a*x)
ex / sum(ex)
}
## method 2: H C L distributions per color (fitted on annotated dataset)
naming_sample_from_distribution = function(pal, model) {
hcl = get_hcl_matrix(pal)
nms = names(model)
z = sapply(1:length(pal), function(i) {
sapply(nms, function(nm) {
s = sapply(c("H", "C", "L"), function(d) {
r = model[[nm]][[d]]
v = hcl[i, d]
if (d == "H") {
vs = c((v - r$mn) / (r$mx - r$mn),
((v-360) - r$mn) / (r$mx - r$mn),
((v+360) - r$mn) / (r$mx - r$mn))
} else {
vs = (v - r$mn) / (r$mx - r$mn)
}
sum(dbeta(vs, r$fit$estimate["shape1"], r$fit$estimate["shape2"]))
})
#unname(s[1] * s[3])
prod(s)
})
})
zt = t(z)
zt2 = zt / rowSums(zt)
-zt2
}
###
create_name_data = function() {
hcl_df = data.frame(h = stats::runif(20000, min = 0, max = 360),
c = stats::runif(20000, min = 0, max = 1),
l = stats::runif(20000, min = 0, max = 100))
hcl_df$max_c = colorspace::max_chroma(h = hcl_df$h, l = hcl_df$l)
hcl_df$c = hcl_df$c * hcl_df$max_c
allcols = hcl(hcl_df$h, hcl_df$c, hcl_df$l)
allcols[1:length(.C4A$naming_colors)] = unname(.C4A$naming_colors) # to make sure every name color has matches, no matter what model parameters are used
ids = name_max(allcols)
x = split(allcols, ids)
x = lapply(x, head, 200)
x = lapply(x, function(xi) {
if (length(xi) != 200) {
xi = sample(xi, size = 200, replace = TRUE)
} else {
xi
}
})
names(x) = names(.C4A$naming_colors)
dfs = lapply(x, function(v) {
n = length(v)
m = 1000
rads = sample(seq(0, .5, length.out = m), size = n, replace = TRUE, prob = 1:m)
alphs = sample(seq(0, 360, length.out = m), size = n, replace = TRUE)
df = data.frame(hex = v)
df$x = 0.5 + rads * sin(alphs * 2 * pi)
df$y = 0.5 + rads * cos(alphs * 2 * pi)
df
})
names(dfs) = names(.C4A$naming_colors)
dfs
}
update_nameability = function() {
s = .C4A$s
z = .C4A$z
sname = .C4A$s[,dimnames(s)[[2]] == "nameability", ]
pals = dimnames(sname)[[1]]
cats = which(z$type == "cat")
mins = z$nmin
maxs = z$nmax
m = do.call(rbind, mapply(function(pal, mn, mx) {
res = logical(ncol(sname))
res[mn:mx] = vapply(mn:mx, function(n) {
p = c4a(pal, n = n)
nameability(p)
}, FUN.VALUE = logical(1))
res
}, pals[cats], mins[cats], maxs[cats], SIMPLIFY = FALSE, USE.NAMES = FALSE))
sname[cats, ] = m
.C4A$s[,dimnames(s)[[2]] == "nameability", ] = sname
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.