1 |
x |
|
con |
|
tr |
|
alpha |
|
pr |
|
crit |
|
SEED |
|
KB |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, con = 0, tr = 0.2, alpha = 0.05, pr = TRUE, crit = NA,
SEED = TRUE, KB = FALSE)
{
if (tr == 0.5)
stop("Use the R function medpb to compare medians")
if (is.data.frame(x))
x = as.matrix(x)
if (KB)
stop("Use the function kbcon")
flag <- T
if (alpha != 0.05 && alpha != 0.01)
flag <- F
if (is.matrix(x))
x <- listm(x)
if (!is.list(x))
stop("Data must be stored in a matrix or in list mode.")
con <- as.matrix(con)
J <- length(x)
sam = NA
h <- vector("numeric", J)
w <- vector("numeric", J)
xbar <- vector("numeric", J)
for (j in 1:J) {
xx <- !is.na(x[[j]])
val <- x[[j]]
x[[j]] <- val[xx]
sam[j] = length(x[[j]])
h[j] <- length(x[[j]]) - 2 * floor(tr * length(x[[j]]))
w[j] <- ((length(x[[j]]) - 1) * winvar(x[[j]], tr))/(h[j] *
(h[j] - 1))
xbar[j] <- mean(x[[j]], tr)
}
if (sum(con^2) == 0) {
CC <- (J^2 - J)/2
if (CC > 28)
print("For faster execution time but less power, use kbcon")
psihat <- matrix(0, CC, 6)
dimnames(psihat) <- list(NULL, c("Group", "Group", "psihat",
"ci.lower", "ci.upper", "p.value"))
test <- matrix(NA, CC, 6)
dimnames(test) <- list(NULL, c("Group", "Group", "test",
"crit", "se", "df"))
jcom <- 0
for (j in 1:J) {
for (k in 1:J) {
if (j < k) {
jcom <- jcom + 1
test[jcom, 3] <- abs(xbar[j] - xbar[k])/sqrt(w[j] +
w[k])
sejk <- sqrt(w[j] + w[k])
test[jcom, 5] <- sejk
psihat[jcom, 1] <- j
psihat[jcom, 2] <- k
test[jcom, 1] <- j
test[jcom, 2] <- k
psihat[jcom, 3] <- (xbar[j] - xbar[k])
df <- (w[j] + w[k])^2/(w[j]^2/(h[j] - 1) +
w[k]^2/(h[k] - 1))
test[jcom, 6] <- df
psihat[jcom, 6] <- 2 * (1 - pt(test[jcom, 3],
df))
if (!KB) {
if (CC > 28)
flag = F
if (flag) {
if (alpha == 0.05)
crit <- smmcrit(df, CC)
if (alpha == 0.01)
crit <- smmcrit01(df, CC)
}
if (!flag || CC > 28)
crit <- smmvalv2(dfvec = rep(df, CC), alpha = alpha,
SEED = SEED)
}
if (KB)
crit <- sqrt((J - 1) * (1 + (J - 2)/df) *
qf(1 - alpha, J - 1, df))
test[jcom, 4] <- crit
psihat[jcom, 4] <- (xbar[j] - xbar[k]) - crit *
sejk
psihat[jcom, 5] <- (xbar[j] - xbar[k]) + crit *
sejk
}
}
}
}
if (sum(con^2) > 0) {
if (nrow(con) != length(x)) {
stop("The number of groups does not match the number of contrast coefficients.")
}
psihat <- matrix(0, ncol(con), 5)
dimnames(psihat) <- list(NULL, c("con.num", "psihat",
"ci.lower", "ci.upper", "p.value"))
test <- matrix(0, ncol(con), 5)
dimnames(test) <- list(NULL, c("con.num", "test", "crit",
"se", "df"))
df <- 0
for (d in 1:ncol(con)) {
psihat[d, 1] <- d
psihat[d, 2] <- sum(con[, d] * xbar)
sejk <- sqrt(sum(con[, d]^2 * w))
test[d, 1] <- d
test[d, 2] <- sum(con[, d] * xbar)/sejk
df <- (sum(con[, d]^2 * w))^2/sum(con[, d]^4 * w^2/(h -
1))
if (flag) {
if (alpha == 0.05)
crit <- smmcrit(df, ncol(con))
if (alpha == 0.01)
crit <- smmcrit01(df, ncol(con))
}
if (!flag)
crit <- smmvalv2(dfvec = rep(df, ncol(con)),
alpha = alpha, SEED = SEED)
test[d, 3] <- crit
test[d, 4] <- sejk
test[d, 5] <- df
psihat[d, 3] <- psihat[d, 2] - crit * sejk
psihat[d, 4] <- psihat[d, 2] + crit * sejk
psihat[d, 5] <- 2 * (1 - pt(abs(test[d, 2]), df))
}
}
if (pr) {
print("Note: confidence intervals are adjusted to control FWE")
print("But p-values are not adjusted to control FWE")
print("Adjusted p-values can be computed with the R function p.adjusted")
}
list(n = sam, test = test, psihat = psihat)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.