1 |
x |
|
crit |
|
con |
|
tr |
|
alpha |
|
nboot |
|
grp |
|
WIN |
|
win |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, crit = NA, con = 0, tr = 0.2, alpha = 0.05, nboot = 2000,
grp = NA, WIN = FALSE, win = 0.1)
{
con <- as.matrix(con)
if (is.matrix(x)) {
xx <- list()
for (i in 1:ncol(x)) {
xx[[i]] <- x[, i]
}
x <- xx
}
if (!is.list(x))
stop("Data must be stored in list mode or in matrix mode.")
if (!is.na(sum(grp))) {
xx <- list()
for (i in 1:length(grp)) xx[[i]] <- x[[grp[1]]]
x <- xx
}
J <- length(x)
tempn <- 0
for (j in 1:J) {
temp <- x[[j]]
temp <- temp[!is.na(temp)]
tempn[j] <- length(temp)
x[[j]] <- temp
}
Jm <- J - 1
d <- ifelse(sum(con^2) == 0, (J^2 - J)/2, ncol(con))
if (is.na(crit) && tr != 0.2)
stop("A critical value must be specified when\nthe amount of trimming differs from .2")
if (WIN) {
if (tr < 0.2)
warning("When Winsorizing, the amount of trimming should be at least\n.2")
if (win > tr)
stop("Amount of Winsorizing must <= amount of trimming")
if (min(tempn) < 15) {
warning("Winsorizing with sample sizes less than 15 can")
warning(" result in poor control over the probability of a Type I error")
}
for (j in 1:J) {
x[[j]] <- winval(x[[j]], win)
}
}
if (is.na(crit)) {
if (d == 1)
crit <- alpha/2
if (d == 2 && alpha == 0.05 && nboot == 1000)
crit <- 0.014
if (d == 2 && alpha == 0.05 && nboot == 2000)
crit <- 0.014
if (d == 3 && alpha == 0.05 && nboot == 1000)
crit <- 0.009
if (d == 3 && alpha == 0.05 && nboot == 2000)
crit <- 0.0085
if (d == 3 && alpha == 0.025 && nboot == 1000)
crit <- 0.004
if (d == 3 && alpha == 0.025 && nboot == 2000)
crit <- 0.004
if (d == 3 && alpha == 0.01 && nboot == 1000)
crit <- 0.001
if (d == 3 && alpha == 0.01 && nboot == 2000)
crit <- 0.001
if (d == 4 && alpha == 0.05 && nboot == 2000)
crit <- 0.007
if (d == 5 && alpha == 0.05 && nboot == 2000)
crit <- 0.006
if (d == 6 && alpha == 0.05 && nboot == 1000)
crit <- 0.004
if (d == 6 && alpha == 0.05 && nboot == 2000)
crit <- 0.0045
if (d == 6 && alpha == 0.025 && nboot == 1000)
crit <- 0.002
if (d == 6 && alpha == 0.025 && nboot == 2000)
crit <- 0.0015
if (d == 6 && alpha == 0.01 && nboot == 2000)
crit <- 5e-04
if (d == 10 && alpha == 0.05 && nboot <= 2000)
crit <- 0.002
if (d == 10 && alpha == 0.05 && nboot == 3000)
crit <- 0.0023
if (d == 10 && alpha == 0.025 && nboot <= 2000)
crit <- 5e-04
if (d == 10 && alpha == 0.025 && nboot == 3000)
crit <- 0.001
if (d == 15 && alpha == 0.05 && nboot == 2000)
crit <- 0.0016
if (d == 15 && alpha == 0.025 && nboot == 2000)
crit <- 5e-04
if (d == 15 && alpha == 0.05 && nboot == 5000)
crit <- 0.0026
if (d == 15 && alpha == 0.025 && nboot == 5000)
crit <- 6e-04
}
if (is.na(crit) && alpha == 0.05)
crit <- 0.0268660714 * (1/d) - 0.0003321429
if (is.na(crit))
crit <- alpha/(2 * d)
if (d > 10 && nboot < 5000)
warning("Suggest using nboot=5000 when the number\nof contrasts exceeds 10.")
icl <- round(crit * nboot) + 1
icu <- round((1 - crit) * nboot)
if (sum(con^2) == 0) {
con <- matrix(0, J, d)
id <- 0
for (j in 1:Jm) {
jp <- j + 1
for (k in jp:J) {
id <- id + 1
con[j, id] <- 1
con[k, id] <- 0 - 1
}
}
}
psihat <- matrix(0, ncol(con), 6)
dimnames(psihat) <- list(NULL, c("con.num", "psihat", "se",
"ci.lower", "ci.upper", "p.value"))
if (nrow(con) != length(x))
stop("The number of groups does not match the number\n of contrast coefficients.")
bvec <- matrix(NA, nrow = J, ncol = nboot)
set.seed(2)
print("Taking bootstrap samples. Please wait.")
for (j in 1:J) {
print(paste("Working on group ", j))
data <- matrix(sample(x[[j]], size = length(x[[j]]) *
nboot, replace = TRUE), nrow = nboot)
bvec[j, ] <- apply(data, 1, mean, tr)
}
test <- NA
for (d in 1:ncol(con)) {
top <- 0
for (i in 1:J) {
top <- top + con[i, d] * bvec[i, ]
}
test[d] <- sum((top > 0))/nboot
test[d] <- min(test[d], 1 - test[d])
top <- sort(top)
psihat[d, 4] <- top[icl]
psihat[d, 5] <- top[icu]
}
for (d in 1:ncol(con)) {
psihat[d, 1] <- d
testit <- lincon(x, con[, d], tr, pr = FALSE)
psihat[d, 6] <- test[d]
psihat[d, 2] <- testit$psihat[1, 2]
psihat[d, 3] <- testit$test[1, 4]
}
print("Reminder: To control FWE, reject if the p-value is less than")
print("the crit.p.value listed in the output.")
list(psihat = psihat, crit.p.value = crit, con = con)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.