1 |
x |
|
y |
|
xout |
|
outfun |
|
STAND |
|
alpha |
|
pr |
|
BLO |
|
HC3 |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, xout = FALSE, outfun = outpro, STAND = TRUE,
alpha = 0.05, pr = TRUE, BLO = FALSE, HC3 = FALSE, ...)
{
if (!is.list(x))
stop("Argument x should have list mode")
J = length(x)
x = lapply(x, as.matrix)
pchk = lapply(x, ncol)
temp = matl(pchk)
if (var(as.vector(temp)) != 0)
stop("Something is wrong. Number of covariates differs among the groups being compared")
nv = NULL
p = ncol(x[[1]])
p1 = p + 1
for (j in 1:J) {
xy = elimna(cbind(x[[j]], y[[j]]))
x[[j]] = xy[, 1:p]
y[[j]] = xy[, p1]
x[[j]] = as.matrix(x[[j]])
nv = c(nv, nrow(x[[j]]))
}
nv.keep = nv
critrad = NULL
if (xout) {
temp1 = lapply(x, outfun, plotit = FALSE, STAND = STAND,
...)
for (j in 1:J) {
x[[j]] = x[[j]][temp1[[j]]$keep, ]
y[[j]] = y[[j]][temp1[[j]]$keep]
}
if (BLO) {
for (j in 1:J) {
temp = reglev(x[[j]], y[[j]], plotit = FALSE)
ad1 = c(temp1[[j]]$out.id, temp$regout)
flag1 = duplicated(ad1)
if (sum(flag1) > 0) {
flag1 = ad1[flag1]
x[[j]] = as.matrix(x[[j]])
x[[j]] = x[[j]][-flag1, ]
y[[j]] = y[[j]][-flag1]
}
}
}
}
x = lapply(x, as.matrix)
K = p1
est = matrix(NA, nrow = J, ncol = p1)
grpnum = NULL
for (j in 1:J) grpnum[j] = paste("Group", j)
vlabs = "Intercept"
for (j in 2:p1) vlabs[j] = paste("Slope", j - 1)
dimnames(est) = list(grpnum, vlabs)
ecov = list()
ecovinv = list()
W = rep(0, p1)
gmean = rep(0, p1)
for (j in 1:J) {
est[j, ] = ols(x[[j]], y[[j]], xout = FALSE, plotit = FALSE,
...)$coef
nv.keep[j] = nrow(x[[j]])
ecov[[j]] = olshc4(x[[j]], y[[j]], HC3 = HC3)$cov
ecovinv[[j]] = solve(ecov[[j]])
gmean = gmean + ecovinv[[j]] %*% est[j, ]
W = W + ecovinv[[j]]
}
estall = solve(W) %*% gmean
F = 0
for (k in 1:K) {
for (m in 1:K) {
for (j in 1:J) {
F = F + ecovinv[[j]][k, m] * (est[j, k] - estall[k]) *
(est[j, m] - estall[m])
}
}
}
pvalad = NULL
df = K * (J - 1)
iden = diag(p1)
Aw = 0
for (j in 1:J) {
temp = iden - solve(W) %*% ecovinv[[j]]
tempsq = temp %*% temp
Aw = Aw + (sum(diag(tempsq)) + (sum(diag(temp)))^2)/(nv[j] -
1)
}
Aw = Aw/2
crit = qchisq(alpha, df)
crit = crit + (crit/(2 * df)) * (Aw + 3 * Aw * crit/(df +
2))
alval <- c(1:999)/1000
for (i in 1:999) {
irem <- i
crit = qchisq(alval[i], df)
critad = crit + (crit/(2 * df)) * (Aw + 3 * Aw * crit/(df +
2))
if (F < critad)
break
pvalad = 1 - irem/1000
}
pval = 1 - pchisq(F, df)
crit = qchisq(1 - alpha, df)
critad = NULL
critad = crit + (crit/(2 * df)) * (Aw + 3 * Aw * crit/(df +
2))
est = data.frame(est)
list(n = nv, n.keep = nv.keep, test.stat = F, crit.value = crit,
adjusted.crit = critad, p.value = pval, adjusted.p.value = pvalad,
est = est)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.