dragon | R Documentation |
Description: Estimates a multi-omic Gaussian graphical model for two input layers of paired omic data.
dragon(
layer1,
layer2,
pval = FALSE,
gradient = "finite_difference",
verbose = FALSE
)
layer1 |
: first layer of omics data; rows: samples (order must match layer2), columns: variables |
layer2 |
: second layer of omics data; rows: samples (order must match layer1), columns: variables. |
pval |
: calculate p-values for network edges. Not yet implemented in R; available in netZooPy. |
gradient |
: method for estimating parameters of p-value distribution, applies only if p-val == TRUE. default = "finite_difference"; other option = "exact" |
verbose |
: verbosity level (TRUE/FALSE) |
A list of model results. cov : the shrunken covariance matrix
cov
the shrunken covariance matrix
prec
the shrunken precision matrix
ggm
the shrunken Gaussian graphical model; matrix of partial correlations. Self-edges (diagonal elements) are set to zero.
lambdas
Vector of omics-specific tuning parameters (lambda1, lambda2) for layer1
and layer2
gammas
Reparameterized tuning parameters; gamma = 1 - lambda^2
risk_grid
Risk grid, for assessing optimization. Grid boundaries are in terms of gamma.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.