monsterBereFull | R Documentation |
This function generates a complete bipartite network from gene expression data and sequence motif data. This NI method serves as a default method for inferring bipartite networks in MONSTER. Running monsterBereFull can generate these networks independently from the larger MONSTER method.
monsterBereFull(
motif.data,
expr.data,
alpha = 0.5,
lambda = 10,
score = "motifincluded"
)
motif.data |
A motif dataset, a data.frame, matrix or exprSet containing 3 columns. Each row describes an motif associated with a transcription factor (column 1) a gene (column 2) and a score (column 3) for the motif. |
expr.data |
An expression dataset, as a genes (rows) by samples (columns) data.frame |
alpha |
A weight parameter specifying proportion of weight to give to indirect compared to direct evidence. See documentation. |
lambda |
if using penalized, the lambda parameter in the penalized logistic regression |
score |
String to indicate whether motif information will be readded upon completion of the algorithm |
An matrix or data.frame
data(yeast)
monsterRes <- monsterBereFull(yeast$motif, yeast$exp.cc, alpha=.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.