monsterAnalysis <- setClass("monsterAnalysis", slots=c("tm","nullTM","numGenes","numSamples"))
setMethod("show","monsterAnalysis",function(object){monsterPrintMonsterAnalysis(object)})
#' monsterGetTm
#'
#' acessor for the transition matrix in MONSTER object
#'
#' @param x an object of class "monsterAnalysis"
#' @export
#' @return Transition matrix
#' @examples
#' data(monsterRes)
#' tm <- monsterGetTm(monsterRes)
monsterGetTm <- function(x){
x@tm
}
#' monsterPlotMonsterAnalysis
#'
#' plots the sum of squares of off diagonal mass (differential TF Involvement)
#'
#' @param x an object of class "monsterAnalysis"
#' @param ... further arguments passed to or from other methods.
#' @export
#' @return Plot of the dTFI for each TF against null distribution
#' @examples
#' data(yeast)
#' yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' design <- c(rep(1,25),rep(0,10),rep(NA,15))
#' #monsterRes <- monster(yeast$exp.cc, design,
#' #yeast$motif, nullPerms=10, numMaxCores=1)
#' #monsterPlotMonsterAnalysis(monsterRes)
monsterPlotMonsterAnalysis <- function(x, ...){
monsterdTFIPlot(x,...)
}
#' monsterPrintMonsterAnalysis
#'
#' summarizes the results of a MONSTER analysis
#'
#' @param x an object of class "monster"
#' @param ... further arguments passed to or from other methods.
#' @export
#' @return Description of transition matrices in object
#' @examples
#' data(yeast)
#' yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' design <- c(rep(1,25),rep(0,10),rep(NA,15))
#' #monster(yeast$exp.cc,design,yeast$motif, nullPerms=10, numMaxCores=1)
monsterPrintMonsterAnalysis <- function(x, ...){
cat("MONSTER object\n")
cat(paste(x@numGenes, "genes\n"))
cat(paste(x@numSamples[1],"baseline samples\n"))
cat(paste(x@numSamples[2],"final samples\n"))
cat(paste("Transition driven by", ncol(x@tm), "transcription factors\n"))
cat(paste("Run with", length(x@nullTM), "randomized permutations.\n"))
}
#' MOdeling Network State Transitions from Expression and Regulatory data (MONSTER)
#'
#' This function runs the MONSTER algorithm. Biological states are characterized by distinct patterns
#' of gene expression that reflect each phenotype's active cellular processes.
#' Driving these phenotypes are gene regulatory networks in which transcriptions factors control
#' when and to what degree individual genes are expressed. Phenotypic transitions, such as those that
#' occur when disease arises from healthy tissue, are associated with changes in these networks.
#' MONSTER is an approach to understanding these transitions. MONSTER models phenotypic-specific
#' regulatory networks and then estimates a "transition matrix" that converts one state to another.
#' By examining the properties of the transition matrix, we can gain insight into regulatory
#' changes associated with phenotypic state transition.
#' Important note: the direct regulatory network observed from gene expression is currently
#' implemented as a regular correlation as opposed to the partial correlation described
#' in the paper.
#' Citation: Schlauch, Daniel, et al. "Estimating drivers of cell state transitions using gene regulatory network models."
#' BMC systems biology 11.1 (2017): 139. https://doi.org/10.1186/s12918-017-0517-y
#' @param expr Gene Expression dataset, can be matrix or data.frame of expression values or ExpressionSet.
#' @param design Binary vector indicating case control partition. 1 for case and 0 for control.
#' @param motif Regulatory data.frame consisting of three columns. For each row, a transcription factor (column 1)
#' regulates a gene (column 2) with a defined strength (column 3), usually taken to be 0 or 1
#' @param nullPerms number of random permutations to run (default 100). Set to 0 to only
#' calculate observed transition matrix. When mode is is 'buildNet' it randomly permutes the case and control expression
#' samples, if mode is 'regNet' it will randomly permute the case and control networks.
#' @param ni_method String to indicate algorithm method. Must be one of "bere","pearson","cd","lda", or "wcd". Default is "bere"
#' @param ni.coefficient.cutoff numeric to specify a p-value cutoff at the network
#' inference step. Default is NA, indicating inclusion of all coefficients.
#' @param numMaxCores requires doParallel, foreach. Runs MONSTER in parallel computing
#' environment. Set to 1 to avoid parallelization, NA will take the default parallel pool in the computer.
#' @param outputDir character vector specifying a directory or path in which
#' which to save MONSTER results, default is NA and results are not saved.
#' @param alphaw A weight parameter between 0 and 1 specifying proportion of weight
#' to give to indirect compared to direct evidence. The default is 0.5 to give an
#' equal weight to direct and indirect evidence.
#' @param mode A parameter telling whether to build the regulatory networks ('buildNet') or to use provided regulatory networks
#' ('regNet'). If set to 'regNet', then the parameters motif, ni_method, ni.coefficient.cutoff, and alphaw will be set to NA. Gene regulatory
#' networks are supplied in the 'expr' variable as a TF-by-Gene matrix, by concatenating the TF-by-Gene matrices of case and control, expr has size nTFs x 2nGenes.
#' @export
#' @import doParallel
#' @import parallel
#' @import foreach
#' @importFrom methods new
#' @return An object of class "monsterAnalysis" containing results
#'
#' @examples
#' # Example with the network reconstruction step
#' data(yeast)
#' design <- c(rep(0,20),rep(NA,10),rep(1,20))
#' yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' # Example with provided networks
#' \donttest{
#' pandaResult <- panda(pandaToyData$motif, pandaToyData$expression, pandaToyData$ppi)
#' case=pandaResult@regNet
#' nelemReg=dim(pandaResult@regNet)[1]*dim(pandaResult@regNet)[2]
#' nGenes=length(colnames(pandaResult@regNet))
#' control=matrix(rexp(nelemReg, rate=.1), ncol=nGenes)
#' colnames(control) = colnames(case)
#' rownames(control) = rownames(case)
#' expr = as.data.frame(cbind(control,case))
#' design=c(rep(0,nGenes),rep(1, nGenes))
#' monsterRes <- monster(expr, design, motif=NA, nullPerms=10, numMaxCores=1, mode='regNet')
#' }
#' # alternatively, if a gene regulatory network has already been estimated,
#' # see the domonster function for quick start
monster <- function(expr,
design,
motif,
nullPerms=100,
ni_method="BERE",
ni.coefficient.cutoff = NA,
numMaxCores=1,
outputDir=NA, alphaw=0.5, mode='buildNet'){
if(mode=='regNet'){
motif=NA
alphaw=NA
ni_method=NA
ni.coefficient.cutoff=NA
if(length(design == 1) != length(design == 0)){
stop('case and control have a different number of genes')
}
}else{
if(is.null(motif)){
stop("motif may not be NULL")
}
}
# Data type checking
expr <- monsterCheckDataType(expr)
# Parallelize
# Initiate cluster
if(!is.na(numMaxCores) && numMaxCores > 1){
# Calculate the number of cores
numCores <- detectCores() - 4
numCores <- min(numCores, numMaxCores)
cl <- makeCluster(numCores)
registerDoParallel(cl)
print("Running null permutations in parallel")
print(paste(numCores,"cores used"))
}
iters <- nullPerms+1 # Two networks for each partition, plus observed partition
print(paste(iters,"network transitions to be estimated"))
#start time
strt <- Sys.time()
#loop
if(!is.na(outputDir)){
dir.create(file.path(outputDir))
dir.create(file.path(outputDir,"tms"))
}
# Remove unassigned data
expr <- expr[,design%in%c(0,1)]
design <- design[design%in%c(0,1)]
# Check column order
if(mode == 'regNet'){
numGenes = ncol(expr)/2
if(any(colnames(expr[,design==1]) != colnames(expr[,design==0]))){
stop('Please provide two regulatory networks with the same gene labels and
the same number of genes in the same order')
}
}else if(mode == 'buildNet'){
numGenes = nrow(expr)
}
nullExpr <- expr
if(numMaxCores == 1){
transMatrices=list()
for(i in seq_len(iters)){
print(paste0("Running iteration ", i))
if(i!=1){
if(mode == 'regNet'){
# Resample columns of provided network
nullExpr[] <- expr[,sample(seq_along(colnames(expr)))]
}else if(mode=='buildNet'){
# Resample all entries in gene expression matrix then build null network
nullExpr[] <- expr[sample(seq_along(c(expr)))]
}
}
if(mode == 'buildNet'){
nullExprCases <- nullExpr[,design==1]
nullExprControls <- nullExpr[,design==0]
tmpNetCases <- monsterMonsterNI(motif, nullExprCases,
method=ni_method, regularization="none",
score="none", ni.coefficient.cutoff,
verbose=TRUE, randomize = "none", cpp=FALSE,
alphaw)
tmpNetControls <- monsterMonsterNI(motif, nullExprControls,
method=ni_method, regularization="none",
score="none", ni.coefficient.cutoff,
verbose=TRUE, randomize = "none", cpp=FALSE,
alphaw)
}else if(mode == 'regNet'){
tmpNetCases = nullExpr[,design==1]
tmpNetControls = nullExpr[,design==0]
}
transitionMatrix <- monsterTransformationMatrix(
tmpNetControls, tmpNetCases, remove.diagonal=TRUE, method="ols")
print(paste("Finished running iteration", i))
if (!is.na(outputDir)){
saveRDS(transitionMatrix,file.path(outputDir,'tms',paste0('tm_',i,'.rds')))
}
transMatrices[[i]]=transitionMatrix
}
print(Sys.time()-strt)
}else{
transMatrices <- foreach(i=seq_len(iters),
.packages=c("netZooR","reshape2","penalized","MASS")) %dopar% {
print(paste0("Running iteration ", i))
if(i!=1){
if(mode == 'regNet'){
# Resample columns of provided network
nullExpr[] <- expr[,sample(seq_along(colnames(expr)))]
}else if(mode=='buildNet'){
# Resample all entries in gene expression matrix then build null network
nullExpr[] <- expr[sample(seq_along(c(expr)))]
}
}
if(mode == 'buildNet'){
nullExprCases <- nullExpr[,design==1]
nullExprControls <- nullExpr[,design==0]
tmpNetCases <- monsterMonsterNI(motif, nullExprCases,
method=ni_method, regularization="none",
score="none", ni.coefficient.cutoff,
verbose = FALSE, randomize = "none",
alphaw)
tmpNetControls <- monsterMonsterNI(motif, nullExprControls,
method=ni_method, regularization="none",
score="none", ni.coefficient.cutoff,
verbose = FALSE, randomize = "none",
alphaw)
}else if(mode == 'regNet'){
tmpNetCases = nullExpr[,design==1]
tmpNetControls = nullExpr[,design==0]
}
transitionMatrix <- monsterTransformationMatrix(
tmpNetControls, tmpNetCases, remove.diagonal=TRUE, method="ols")
print(paste("Finished running iteration", i))
if (!is.na(outputDir)){
saveRDS(transitionMatrix,file.path(outputDir,'tms',paste0('tm_',i,'.rds')))
}
transitionMatrix
}
print(Sys.time()-strt)
}
if(!is.na(numMaxCores) && numMaxCores > 1){
stopCluster(cl)
}
gc()
return(
monsterAnalysis(
tm=transMatrices[[1]],
nullTM=transMatrices[-1],
numGenes=numGenes,
numSamples=c(sum(design==0), sum(design==1))))
}
#' Checks that data is something MONSTER can handle
#'
#' @param expr Gene Expression dataset
#' @return expr Gene Expression dataset in the proper form (may be the same as input)
#' @importFrom assertthat assert_that
#' @importFrom methods is
#' @export
#' @examples
#' expr.matrix <- matrix(rnorm(2000),ncol=20)
#' monsterCheckDataType(expr.matrix)
#' #TRUE
#' data(yeast)
#' class(yeast$exp.cc)
#' monsterCheckDataType(yeast$exp.cc)
#' #TRUE
monsterCheckDataType <- function(expr){
assert_that(is.data.frame(expr)||is.matrix(expr)||is(expr,"ExpressionSet"))
if("ExpressionSet" %in% class(expr)){
if (requireNamespace("Biobase", quietly = TRUE)) {
expr <- Biobase::exprs(expr)
}
}
if(is.data.frame(expr)){
expr <- as.matrix(expr)
}
expr
}
globalVariables("i")
#' Bi-partite network analysis tools
#'
#' This function analyzes a bi-partite network.
#'
#' @param network.1 starting network, a genes by transcription factors data.frame with scores
#' for the existence of edges between
#' @param network.2 final network, a genes by transcription factors data.frame with scores
#' for the existence of edges between
#' @param by.tfs logical indicating a transcription factor based transformation. If
#' false, gives gene by gene transformation matrix
#' @param remove.diagonal logical for returning a result containing 0s across the diagonal
#' @param standardize logical indicating whether to standardize the rows and columns
#' @param method character specifying which algorithm to use, default='ols'
#' @return matrix object corresponding to transition matrix
#' @import MASS
#' @importFrom penalized optL1
#' @importFrom reshape2 melt
#' @export
#' @examples
#' data(yeast)
#' cc.net.1 <- monsterMonsterNI(yeast$motif,yeast$exp.cc[1:1000,1:20])
#' cc.net.2 <- monsterMonsterNI(yeast$motif,yeast$exp.cc[1:1000,31:50])
#' monsterTransformationMatrix(cc.net.1, cc.net.2)
monsterTransformationMatrix <- function(network.1, network.2, by.tfs=TRUE, standardize=FALSE,
remove.diagonal=TRUE, method="ols"){
if(is.list(network.1)&&is.list(network.2)){
if(by.tfs){
net1 <- t(network.1$reg.net)
net2 <- t(network.2$reg.net)
} else {
net1 <- network.1$reg.net
net2 <- network.2$reg.net
}
} else if(is.matrix(network.1)&&is.matrix(network.2)){
if(by.tfs){
net1 <- t(network.1)
net2 <- t(network.2)
} else {
net1 <- network.1
net2 <- network.2
}
} else {
stop("Networks must be lists or matrices")
}
if(!method%in%c("ols","kabsch","L1","orig")){
stop("Invalid method. Must be one of 'ols', 'kabsch', 'L1','orig'")
}
if (method == "kabsch"){
tf.trans.matrix <- kabsch(net1,net2)
}
if (method == "orig"){
svd.net2 <- svd(net2)
tf.trans.matrix <- svd.net2$v %*% diag(1/svd.net2$d) %*% t(svd.net2$u) %*% net1
}
if (method == "ols"){
net2.star <- vapply(seq_len(ncol(net1)), function(i,x,y){
lm(y[,i]~x[,i])$resid
}, x=net1, y=net2, FUN.VALUE = numeric(dim(net1)[1]))
tf.trans.matrix <- ginv(t(net1)%*%net1)%*%t(net1)%*%net2.star
colnames(tf.trans.matrix) <- colnames(net1)
rownames(tf.trans.matrix) <- colnames(net1)
print("Using OLS method")
}
if (method == "L1"){
net2.star <- vapply(seq_len(ncol(net1)), function(i,x,y){
lm(y[,i]~x[,i])$resid
}, x=net1, y=net2, FUN.VALUE = numeric(dim(net1)[1]))
tf.trans.matrix <- vapply(seq_len(ncol(net1)), function(i){
z <- optL1(net2.star[,i], net1, fold=5, minlambda1=1,
maxlambda1=2, model="linear", standardize=TRUE)
coefficients(z$fullfit, "penalized")
}, FUN.VALUE = numeric(1))
colnames(tf.trans.matrix) <- rownames(tf.trans.matrix)
print("Using L1 method")
}
if (standardize){
tf.trans.matrix <- apply(tf.trans.matrix, 1, function(x){
x/sum(abs(x))
})
}
if (remove.diagonal){
diag(tf.trans.matrix) <- 0
}
colnames(tf.trans.matrix) <- rownames(tf.trans.matrix)
tf.trans.matrix
}
kabsch <- function(P,Q){
P <- apply(P,2,function(x){
x - mean(x)
})
Q <- apply(Q,2,function(x){
x - mean(x)
})
covmat <- cov(P,Q)
P.bar <- colMeans(P)
Q.bar <- colMeans(Q)
num.TFs <- ncol(P) #n
num.genes <- nrow(P) #m
# covmat <- (t(P)%*%Q - P.bar%*%t(Q.bar)*(num.genes))
svd.res <- svd(covmat-num.TFs*Q.bar%*%t(P.bar))
# Note the scalar multiplier in the middle.
# NOT A MISTAKE!
c.k <- colSums(P %*% svd.res$v * Q %*% svd.res$u) -
num.genes*(P.bar%*%svd.res$v)*(Q.bar%*%svd.res$u)
E <- diag(c(sign(c.k)))
W <- svd.res$v %*% E %*% t(svd.res$u)
rownames(W) <- colnames(P)
colnames(W) <- colnames(P)
W
}
#' Transformation matrix plot
#'
#' This function plots a hierachically clustered heatmap and
#' corresponding dendrogram of a transaction matrix
#'
#' @param monsterObj monsterAnalysis Object
#' @param method distance metric for hierarchical clustering.
#' Default is "Pearson correlation"
#' @export
#' @import ggplot2
#' @import grid
#' @rawNamespace import(stats, except= c(cov2cor,decompose,toeplitz,lowess,update,spectrum))
#' @return ggplot2 object for transition matrix heatmap
#' @examples
#' # data(yeast)
#' # design <- c(rep(0,20),rep(NA,10),rep(1,20))
#' # yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' # monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=10, numMaxCores=1)
#' data(monsterRes)
#' monsterHclHeatmapPlot(monsterRes)
monsterHclHeatmapPlot <- function(monsterObj, method="pearson"){
x <- monsterObj@tm
if(method=="pearson"){
dist.func <- function(y) as.dist(cor(y))
} else {
dist.func <- dist
}
x <- scale(x)
dd.col <- as.dendrogram(hclust(dist.func(x)))
col.ord <- order.dendrogram(dd.col)
dd.row <- as.dendrogram(hclust(dist.func(t(x))))
row.ord <- order.dendrogram(dd.row)
xx <- x[col.ord, row.ord]
xx_names <- attr(xx, "dimnames")
df <- as.data.frame(xx)
colnames(df) <- xx_names[[2]]
df$Var1 <- xx_names[[1]]
df$Var1 <- with(df, factor(Var1, levels=Var1, ordered=TRUE))
mdf <- melt(df)
ddata_x <- dendro_data(dd.row)
ddata_y <- dendro_data(dd.col)
### Set up a blank theme
theme_none <- theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.title.x = element_text(colour=NA),
axis.title.y = element_blank(),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.line = element_blank()
)
### Set up a blank theme
theme_heatmap <- theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.title.x = element_text(colour=NA),
axis.title.y = element_blank(),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.line = element_blank()
)
### Create plot components ###
# Heatmap
p1 <- ggplot(mdf, aes(x=variable, y=Var1)) +
geom_tile(aes(fill=value)) +
scale_fill_gradient2() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
# Dendrogram 1
p2 <- ggplot(segment(ddata_x)) +
geom_segment(aes(x=x, y=y, xend=xend, yend=yend)) +
theme_none + theme(axis.title.x=element_blank())
# Dendrogram 2
p3 <- ggplot(segment(ddata_y)) +
geom_segment(aes(x=x, y=y, xend=xend, yend=yend)) +
coord_flip() + theme_none
### Draw graphic ###
grid.newpage()
print(p1, vp=viewport(0.80, 0.8, x=0.400, y=0.40))
print(p2, vp=viewport(0.73, 0.2, x=0.395, y=0.90))
print(p3, vp=viewport(0.20, 0.8, x=0.910, y=0.43))
}
#' Principal Components plot of transformation matrix
#'
#' This function plots the first two principal components for a
#' transaction matrix
#'
#' @param monsterObj a monsterAnalysis object resulting from a monster analysis
#' @param title The title of the plot
#' @param clusters A vector indicating the number of clusters to compute
#' @param alpha A vector indicating the level of transparency to be plotted
#' @return ggplot2 object for transition matrix PCA
#' @import ggdendro
#' @export
#' @examples
#' # data(yeast)
#' # design <- c(rep(0,20),rep(NA,10),rep(1,20))
#' # yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' # monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)#'
#' data(monsterRes)
#' # Color the nodes according to cluster membership
#' clusters <- kmeans(monsterGetTm(monsterRes),3)$cluster
#' monsterTransitionPCAPlot(monsterRes,
#' title="PCA Plot of Transition - Cell Cycle vs Stress Response",
#' clusters=clusters)
monsterTransitionPCAPlot <- function(monsterObj,
title="PCA Plot of Transition",
clusters=1, alpha=1){
tm.pca <- princomp(monsterObj@tm)
odsm <- apply(monsterObj@tm,2,function(x){t(x)%*%x})
odsm.scaled <- 2*(odsm-mean(odsm))/sd(odsm)+4
scores.pca <- as.data.frame(tm.pca$scores)
scores.pca <- cbind(scores.pca,'node.names'=rownames(scores.pca))
ggplot(data = scores.pca, aes(x = Comp.1, y = Comp.2, label = node.names)) +
geom_hline(yintercept = 0, colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
geom_text(size = odsm.scaled, alpha=alpha, color=clusters) +
ggtitle(title)
}
#' This function uses igraph to plot the transition matrix (directed graph) as a network.
#' The edges in the network should be read as A 'positively/negatively contributes to' the
#' targeting of B in the target state.
#'
#' @param monsterObj monsterAnalysis Object
#' @param numEdges The number of edges to display
#' @param numTopTFs The number of TFs to display, only when rescale='significance'
#' @param rescale string to specify the order of edges. If set to 'significance',
#' the TFs with the largest dTFI significance (smallest dTFI p-values) will be filtered first before
#' plotting the edges with the largest magnitude in the transition matrix. Otherwise
#' the filtering step will be skipped and the edges with the largest transitions will be plotted.
#' The plotted graph represents the top numEdges edges between the numTopTFs if rescale=='significance'
#' and top numEdges edges otherwise. The edge weight represents the observed transition edges standardized
#' by the null and the node size in the graph is proportional to the p-values of the dTFIs of each
#' TF. When rescale is set to 'significance', the results can be different between two MONSTER runs
#' if the number of permutations is not large enough to sample the null, that is why it is the seed should be set
#' prior to calling MONSTER to get reproducible results. If rescale is set to another value such as 'none', it will
#' produce deterministic results between two identical MONSTER runs.
#' @importFrom igraph graph.data.frame plot.igraph V E V<- E<-
#' @export
#' @return plot the transition matrix (directed graph) as a network.
#' @examples
#' # data(yeast)
#' # yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' # design <- c(rep(0,20),rep(NA,10),rep(1,20))
#' # monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)#'
#' data(monsterRes)
#' monsterTransitionNetworkPlot(monsterRes, rescale='significance')
#' monsterTransitionNetworkPlot(monsterRes, rescale='none')
monsterTransitionNetworkPlot <- function(monsterObj, numEdges=100, numTopTFs=10, rescale='significance'){
## Calculate p-values for off-diagonals
transitionSigmas <- function(tm.observed, tm.null){
tm.null.mean <- apply(simplify2array(tm.null), seq_len(2), mean)
tm.null.sd <- apply(simplify2array(tm.null), seq_len(2), sd)
sigmas <- (tm.observed - tm.null.mean)/tm.null.sd
}
tm.sigmas <- transitionSigmas(monsterObj@tm, monsterObj@nullTM)
diag(tm.sigmas) <- 0
tm.sigmas.melt <- melt(tm.sigmas)
adjMat <- monsterObj@tm
diag(adjMat) <- 0
adjMat.melt <- melt(adjMat)
adj.combined <- merge(tm.sigmas.melt, adjMat.melt, by=c("Var1","Var2"))
# adj.combined[,1] <- mappings[match(adj.combined[,1], mappings[,1]),2]
# adj.combined[,2] <- mappings[match(adj.combined[,2], mappings[,1]),2]
dTFI_pVals_All <- 1-2*abs(.5-monsterCalculateTmPValues(monsterObj,
method="z-score"))
if(rescale=='significance'){
topTFsIncluded <- names(sort(dTFI_pVals_All)[seq_len(numTopTFs)])
topTFIndices <- 2>(is.na(match(adj.combined[,1],topTFsIncluded)) +
is.na(match(adj.combined[,2],topTFsIncluded)))
adj.combined <- adj.combined[topTFIndices,]
}
adj.combined <- adj.combined[
abs(adj.combined[,4])>=sort(abs(adj.combined[,4]),decreasing=TRUE)[numEdges],]
tfNet <- graph_from_data_frame(adj.combined, directed=TRUE)
vSize <- -log(dTFI_pVals_All)
vSize[vSize<0] <- 0
vSize[vSize>3] <- 3
V(tfNet)$size <- vSize[V(tfNet)$name]*5
V(tfNet)$color <- "yellow"
E(tfNet)$width <- (abs(E(tfNet)$value.x))*15/max(abs(E(tfNet)$value.x))
E(tfNet)$color <-ifelse(E(tfNet)$value.x>0, "blue", "red")
plot.igraph(tfNet, edge.arrow.size=2, vertex.label.cex= 1.5, vertex.label.color= "black",main="")
}
#' This function plots the Off diagonal mass of an
#' observed Transition Matrix compared to a set of null TMs
#'
#' @param monsterObj monsterAnalysis Object
#' @param rescale string indicating whether to reorder transcription
#' factors according to their statistical significance and to
#' rescale the values observed to be standardized by the null
#' distribution ('significance'), to reorder transcription
#' factors according to the largest dTFIs ('magnitude') with the TF x axis labels proportional to their significance
#' , or finally without ordering them ('none'). When rescale is set to 'significance',
#' the results can be different between two MONSTER runs if the number of permutations is not large enough to sample
#' the null, that is why it is the seed should be set prior to calling MONSTER to get reproducible results.
#' If rescale is set to another value such as 'magnitude' or 'none', it will produce deterministic results
#' between two identical MONSTER runs.
#' @param plot.title String specifying the plot title
#' @param highlight.tfs vector specifying a set of transcription
#' factors to highlight in the plot
#' @param nTFs number of TFs to plot in x axis. -1 takes all TFs.
#' @return ggplot2 object for transition matrix comparing observed
#' distribution to that estimated under the null
#' @export
#' @examples
#' # data(yeast)
#' # yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' # design <- c(rep(0,20),rep(NA,10),rep(1,20))
#' # monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)#'
#' data(monsterRes)
#' monsterdTFIPlot(monsterRes)
monsterdTFIPlot <- function(monsterObj, rescale='none', plot.title=NA, highlight.tfs=NA,
nTFs=-1){
if(is.na(plot.title)){
plot.title <- "Differential TF Involvement"
}
num.iterations <- length(monsterObj@nullTM)
# Calculate the off-diagonal squared mass for each transition matrix
null.SSODM <- lapply(monsterObj@nullTM,function(x){
apply(x,2,function(y){t(y)%*%y})
})
null.ssodm.matrix <- matrix(unlist(null.SSODM),ncol=num.iterations)
null.ssodm.matrix <- t(apply(null.ssodm.matrix,1,sort))
ssodm <- apply(monsterObj@tm,2,function(x){t(x)%*%x})
seqssdom <- seq_along(ssodm)
names(seqssdom) <- names(ssodm)
p.values <- 1-pnorm(vapply(seqssdom,function(i){
(ssodm[i]-mean(null.ssodm.matrix[i,]))/sd(null.ssodm.matrix[i,])
}, FUN.VALUE = numeric(1), USE.NAMES = TRUE))
t.values <- vapply(seqssdom,function(i){
(ssodm[i]-mean(null.ssodm.matrix[i,]))/sd(null.ssodm.matrix[i,])
}, FUN.VALUE = numeric(1), USE.NAMES = TRUE)
# Process the data for ggplot2
combined.mat <- cbind(null.ssodm.matrix, ssodm)
colnames(combined.mat) <- c(rep('Null',num.iterations),"Observed")
if (rescale == 'significance'){
combined.mat <- t(apply(combined.mat,1,function(x){
(x-mean(x[-(num.iterations+1)]))/sd(x[-(num.iterations+1)])
}))
x.axis.order <- rownames(monsterObj@nullTM[[1]])[order(-t.values)]
x.axis.size <- 10 # pmin(15,7-log(p.values[order(p.values)]))
} else if (rescale == 'none'){
x.axis.order <- rownames(monsterObj@nullTM[[1]])
x.axis.size <- pmin(15,7-log(p.values))
} else if (rescale == 'magnitude'){
x.axis.order <- rownames(monsterObj@nullTM[[1]])[order(-combined.mat[, dim(combined.mat)[2]])]
x.axis.size <- pmin(15,7-log(p.values))
}
if(nTFs==-1){
nTFs = length(x.axis.order)
}
null.SSODM.melt <- melt(combined.mat)[,-1][,c(2,1)]
null.SSODM.melt$TF<-rep(rownames(monsterObj@nullTM[[1]]),num.iterations+1)
## Plot the data
ggplot(null.SSODM.melt, aes(x=TF, y=value))+
geom_point(aes(color=factor(Var2), alpha = .5*as.numeric(factor(Var2))), size=2) +
scale_color_manual(values = c("blue", "red")) +
scale_alpha(guide = "none") +
scale_x_discrete(limits = x.axis.order[seq_len(nTFs)] ) +
theme_classic() +
theme(legend.title=element_blank(),
axis.text.x = element_text(colour = 1+x.axis.order%in%highlight.tfs,
angle = 90, hjust = 1,
size=x.axis.size,face="bold")) +
ylab("dTFI") +
ggtitle(plot.title)
}
#' Calculate p-values for a tranformation matrix
#'
#' This function calculates the significance of an observed
#' transition matrix given a set of null transition matrices
#'
#' @param monsterObj monsterAnalysis Object
#' @param method one of 'z-score' or 'non-parametric'
#' @return vector of p-values for each transcription factor
#' @export
#' @examples
#' # data(yeast)
#' # design <- c(rep(0,20),rep(NA,10),rep(1,20))
#' # yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
#' # monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)
#' data(monsterRes)
#' monsterCalculateTmPValues(monsterRes)
monsterCalculateTmPValues <- function(monsterObj, method="z-score"){
num.iterations <- length(monsterObj@nullTM)
# Calculate the off-diagonal squared mass for each transition matrix
null.SSODM <- lapply(monsterObj@nullTM,function(x){
apply(x,1,function(y){t(y)%*%y})
})
null.ssodm.matrix <- matrix(unlist(null.SSODM),ncol=num.iterations)
null.ssodm.matrix <- t(apply(null.ssodm.matrix,1,sort))
ssodm <- apply(monsterObj@tm,1,function(x){t(x)%*%x})
# Get p-value (rank of observed within null ssodm)
if(method=="non-parametric"){
seqssodm <- seq_along(ssodm)
names(seqssodm) <- names(ssodm)
p.values <- vapply(seqssodm,function(i){
1-findInterval(ssodm[i], null.ssodm.matrix[i,])/num.iterations
}, FUN.VALUE = numeric(1), USE.NAMES = TRUE)
} else if (method=="z-score"){
seqssdom=seq_along(ssodm)
names(seqssdom)=names(ssodm)
p.values <- pnorm(vapply(seqssdom,function(i){
(ssodm[i]-mean(null.ssodm.matrix[i,]))/sd(null.ssodm.matrix[i,])
}, FUN.VALUE = numeric(1), USE.NAMES = TRUE))
} else {
print('Undefined method')
}
p.values
}
globalVariables(c("Var1", "Var2","value","variable","xend","yend","y","Comp.1", "Comp.2","node.names","TF","i"))
#' Bipartite Edge Reconstruction from Expression data
#'
#' This function generates a complete bipartite network from
#' gene expression data and sequence motif data
#'
#' @param motif.data A motif dataset, a data.frame, matrix or exprSet containing
#' 3 columns. Each row describes an motif associated with a transcription
#' factor (column 1) a gene (column 2) and a score (column 3) for the motif.
#' @param expr.data An expression dataset, as a genes (rows) by samples (columns)
#' @param verbose logical to indicate printing of output for algorithm progress.
#' @param method String to indicate algorithm method. Must be one of
#' "bere","pearson","cd","lda", or "wcd". Default is "bere".
#' Important note: the direct regulatory network observed from gene expression is currently
#' implemented as a regular correlation as opposed to the partial correlation described
#' in the paper (please see Schlauch et al., 2017, https://doi.org/10.1186/s12918-017-0517-y)
#' @param ni.coefficient.cutoff numeric to specify a p-value cutoff at the network
#' inference step. Default is NA, indicating inclusion of all coefficients.
#' @param alphaw A weight parameter between 0 and 1 specifying proportion of weight
#' to give to indirect compared to direct evidence. The default is 0.5 to give an
#' equal weight to direct and indirect evidence.
#' @param randomize logical indicating randomization by genes, within genes or none
#' @param score String to indicate whether motif information will be
#' readded upon completion of the algorithm
#' to give to indirect compared to direct evidence. See documentation.
#' @param regularization String parameter indicating one of "none", "L1", "L2"
#' @param cpp logical use C++ for maximum speed, set to false if unable to run.
#' @export
#' @return matrix for inferred network between TFs and genes
#' @importFrom tidyr spread
#' @importFrom penalized penalized
#' @importFrom reshape2 dcast
#' @examples
#' data(yeast)
#' cc.net <- monsterMonsterNI(yeast$motif,yeast$exp.cc)
monsterMonsterNI <- function(motif.data,
expr.data,
verbose=FALSE,
randomize="none",
method="bere",
ni.coefficient.cutoff=NA,
alphaw=1.0,
regularization="none",
score="motifincluded",
cpp=FALSE){
if(verbose)
print('Initializing and validating')
# Create vectors for TF names and Gene names from Motif dataset
tf.names <- sort(unique(motif.data[,1]))
num.TFs <- length(tf.names)
if (is.null(expr.data)){
stop("Expression data null")
} else {
# Use the motif data AND the expr data (if provided) for the gene list
gene.names <- sort(intersect(motif.data[,2],rownames(expr.data)))
num.genes <- length(gene.names)
# Filter out the expr genes without motif data
expr.data <- expr.data[rownames(expr.data) %in% gene.names,]
# Keep everything sorted alphabetically
expr.data <- expr.data[order(rownames(expr.data)),]
num.conditions <- ncol(expr.data);
if (randomize=='within.gene'){
expr.data <- t(apply(expr.data, 1, sample))
if(verbose)
print("Randomizing by reordering each gene's expression")
} else if (randomize=='by.genes'){
rownames(expr.data) <- sample(rownames(expr.data))
expr.data <- expr.data[order(rownames(expr.data)),]
if(verbose)
print("Randomizing by reordering each gene labels")
}
}
# Bad data checking
if (num.genes==0){
stop("Validating data. No matched genes.\n
Please ensure that gene names in expression
file match gene names in motif file.")
}
strt<-Sys.time()
if(num.conditions==0) {
stop("Number of samples = 0")
gene.coreg <- diag(num.genes)
} else if(num.conditions<3) {
stop('Not enough expression conditions detected to calculate correlation.')
} else {
if(verbose)
print('Verified adequate samples, calculating correlation matrix')
if(cpp){
# C++ implementation
gene.coreg <- rcpp_ccorr(t(apply(expr.data, 1, function(x)(x-mean(x))/(sd(x)))))
rownames(gene.coreg)<- rownames(expr.data)
colnames(gene.coreg)<- rownames(expr.data)
} else if(!(method %in% c("BERE","pearson"))) {
# Standard r correlation calculation
gene.coreg <- cor(t(expr.data), method="pearson", use="pairwise.complete.obs")
}
}
print(Sys.time()-strt)
if(verbose)
print('More data cleaning')
# Convert 3 column format to matrix format
colnames(motif.data) <- c('TF','GENE','value')
if( method != "BERE"){
regulatory.network <- spread(motif.data, GENE, value, fill=0)
rownames(regulatory.network) <- regulatory.network[,1]
# sort the TFs (rows), and remove redundant first column
regulatory.network <- regulatory.network[order(rownames(regulatory.network)),-1]
# sort the genes (columns)
regulatory.network <- as.matrix(regulatory.network[,order(colnames(regulatory.network))])
# Filter out any motifs that are not in expr dataset (if given)
if (!is.null(expr.data)){
regulatory.network <- regulatory.network[,colnames(regulatory.network) %in% gene.names]
}
# store initial motif network (alphabetized for rows and columns)
# starting.motifs <- regulatory.network
}
if(verbose)
print('Main calculation')
result <- NULL
########################################
if (method=="BERE"){
expr.data <- data.frame(expr.data)
tfdcast <- dcast(motif.data,TF~GENE,fill=0)
rownames(tfdcast) <- tfdcast[,1]
tfdcast <- tfdcast[,-1]
expr.data <- expr.data[sort(rownames(expr.data)),]
tfdcast <- tfdcast[,sort(colnames(tfdcast)),]
tfNames <- rownames(tfdcast)[rownames(tfdcast) %in% rownames(expr.data)]
## Filtering
# filter out the TFs that are not in expression set
tfdcast <- tfdcast[rownames(tfdcast)%in%tfNames,]
# Filter out genes that aren't targetted by anything 7/28/15
commonGenes <- intersect(colnames(tfdcast),rownames(expr.data))
expr.data <- expr.data[commonGenes,]
tfdcast <- tfdcast[,commonGenes]
# check that IDs match
if (prod(rownames(expr.data)==colnames(tfdcast))!=1){
stop("ID mismatch")
}
## Get direct evidence
if ((1-alphaw)!=0){
directCor <- t(cor(t(expr.data),t(expr.data[rownames(expr.data)%in%tfNames,]))^2)
}else{
directCor = matrix(0L, length(tfNames), length(commonGenes))
}
## Get the indirect evidence
if(alphaw==0){
result = matrix(0L, length(tfNames), length(commonGenes))
}else{
result <- t(apply(tfdcast, 1, function(x){
cat(".")
tfTargets <- as.numeric(x)
z <- NULL
if(regularization=="none"){
z <- glm(tfTargets ~ ., data=expr.data, family="binomial")
# 9/10/17
# Adding argument to allow cutoffs based on p-values
if(is.numeric(ni.coefficient.cutoff)){
coefs <- coef(z)
coefs[summary(z)$coef[,4]>ni.coefficient.cutoff] <- 0
logit.res <- apply(expr.data,1,function(x){coefs[1] + sum(coefs[-1]*x)})
return(exp(logit.res)/(1+exp(logit.res)))
} else {
return(predict(z, expr.data,type='response'))
}
} else {
z <- penalized(tfTargets, expr.data,
lambda2=10, model="logistic", standardize=TRUE)
# z <- optL1(tfTargets, expr.data, minlambda1=25, fold=5)
}
# Penalized Logistic Reg
predict(z, expr.data)
}))
}
## Convert values to ranks
if(alphaw<1 && alphaw>0){
directCor <- matrix(rank(directCor), ncol=ncol(directCor))
result <- matrix(rank(result), ncol=ncol(result))
}
consensus <- directCor*(1-alphaw) + result*alphaw
rownames(consensus) <- rownames(tfdcast)
colnames(consensus) <- rownames(expr.data)
consensusRange <- max(consensus)- min(consensus)
if(score=="motifincluded"){
consensus <- as.matrix(consensus + consensusRange*regulatory.network)
}
result=consensus
} else if (method=="pearson"){
tfNames = levels(motif.data$TF)
result <- t(cor(t(expr.data),t(expr.data[rownames(expr.data)%in%tfNames,]))^2)
if(score=="motifincluded"){
result <- as.matrix(consensus + consensusRange*regulatory.network)
}
result
} else {
strt<-Sys.time()
# Remove NA correlations
gene.coreg[is.na(gene.coreg)] <- 0
correlation.dif <- sweep(regulatory.network,1,rowSums(regulatory.network),`/`)%*%
gene.coreg -
sweep(1-regulatory.network,1,rowSums(1-regulatory.network),`/`)%*%
gene.coreg
result <- sweep(correlation.dif, 2, apply(correlation.dif, 2, sd),'/')
# regulatory.network <- ifelse(res>quantile(res,1-mean(regulatory.network)),1,0)
print(Sys.time()-strt)
########################################
if(score=="motifincluded"){
result <- result + max(result)*regulatory.network
}
result
}
return(result)
}
#' Bipartite Edge Reconstruction from Expression data
#' (composite method with direct/indirect)
#'
#' This function generates a complete bipartite network from
#' gene expression data and sequence motif data. This NI method
#' serves as a default method for inferring bipartite networks
#' in MONSTER. Running monsterBereFull can generate these networks
#' independently from the larger MONSTER method.
#'
#' @param motif.data A motif dataset, a data.frame, matrix or exprSet
#' containing 3 columns. Each row describes an motif associated
#' with a transcription factor (column 1) a gene (column 2)
#' and a score (column 3) for the motif.
#' @param expr.data An expression dataset, as a genes (rows) by
#' samples (columns) data.frame
#' @param alpha A weight parameter specifying proportion of weight
#' to give to indirect compared to direct evidence. See documentation.
#' @param lambda if using penalized, the lambda parameter in the penalized logistic regression
#' @param score String to indicate whether motif information will
#' be readded upon completion of the algorithm
#' @importFrom reshape2 dcast
#' @importFrom penalized predict
#' @export
#' @return An matrix or data.frame
#' @examples
#' data(yeast)
#' monsterRes <- monsterBereFull(yeast$motif, yeast$exp.cc, alpha=.5)
monsterBereFull <- function(motif.data,
expr.data,
alpha=.5,
lambda=10,
score="motifincluded"){
expr.data <- data.frame(expr.data)
tfdcast <- dcast(motif.data,TF~GENE,fill=0)
rownames(tfdcast) <- tfdcast[,1]
tfdcast <- tfdcast[,-1]
expr.data <- expr.data[sort(rownames(expr.data)),]
tfdcast <- tfdcast[,sort(colnames(tfdcast)),]
tfNames <- rownames(tfdcast)[rownames(tfdcast) %in% rownames(expr.data)]
## Filtering
# filter out the TFs that are not in expression set
tfdcast <- tfdcast[rownames(tfdcast)%in%tfNames,]
# Filter out genes that aren't targetted by anything 7/28/15
commonGenes <- intersect(colnames(tfdcast),rownames(expr.data))
expr.data <- expr.data[commonGenes,]
tfdcast <- tfdcast[,commonGenes]
# check that IDs match
if (prod(rownames(expr.data)==colnames(tfdcast))!=1){
stop("ID mismatch")
}
## Get direct evidence
directCor <- t(cor(t(expr.data),t(expr.data[rownames(expr.data)%in%tfNames,]))^2)
## Get the indirect evidence
result <- t(apply(tfdcast, 1, function(x){
cat(".")
tfTargets <- as.numeric(x)
# Ordinary Logistic Reg
# z <- glm(tfTargets ~ ., data=expr.data, family="binomial")
# Penalized Logistic Reg
expr.data[is.na(expr.data)] <- 0
z <- penalized(response=tfTargets, penalized=expr.data, unpenalized=~0,
lambda2=lambda, model="logistic", standardize=TRUE)
#z <- optL1(tfTargets, expr.data, minlambda1=25, fold=5)
predict(z, expr.data)
}))
## Convert values to ranks
directCor <- matrix(rank(directCor), ncol=ncol(directCor))
result <- matrix(rank(result), ncol=ncol(result))
consensus <- directCor*(1-alpha) + result*alpha
rownames(consensus) <- rownames(tfdcast)
colnames(consensus) <- rownames(expr.data)
consensusRange <- max(consensus)- min(consensus)
if(score=="motifincluded"){
consensus <- as.matrix(consensus + consensusRange*tfdcast)
}
consensus
}
globalVariables(c("expr.data","lambda","rcpp_ccorr","GENE", "TF","value"))
#' MONSTER results from example cell-cycle yeast transition
#'
#'This data contains the MONSTER result from analysis of Yeast Cell cycle, included in data(yeast).
#'This result arbitrarily takes the first 20 gene expression samples in yeast$cc to be the baseline condition, and the final 20 samples to be the final condition.
#'
#' @docType data
#' @keywords datasets
#' @name monsterRes
#' @usage data(monsterRes)
#' @format MONSTER obj
#' #' @references Schlauch, Daniel, et al. "Estimating drivers of cell state transitions using gene regulatory network models." BMC systems biology 11.1 (2017): 1-10.
#'
NULL
#' Toy data derived from three gene expression datasets and a mapping from transcription factors to genes.
#'
#'This data is a list containing gene expression data from three separate yeast studies along with data mapping yeast transcription factors with genes based on the presence of a sequence binding motif for each transcription factor in the vicinity of each gene.
#' The motif data.frame, yeast$motif, describes a set of pairwise connections where a specific known sequence motif of a transcription factor was found upstream of the corresponding gene.
#' The expression data, yeast$exp.ko, yeast$exp.cc, and yeast$exp.sr, are three gene expression datasets measured in conditions of gene knockout, cell cycle, and stress response, respectively.
#' @docType data
#' @keywords datasets
#' @name yeast
#' @usage data(yeast)
#' @format A list containing 4 data.frames
#' @return A list of length 4
#' @references Glass K, Huttenhower C, Quackenbush J, Yuan GC. Passing Messages Between Biological Networks to Refine Predicted Interactions. PLoS One. 2013 May 31;8(5):e64832.
#'
NULL
#' MONSTER quick-start with pre-made regulatory networks
#'
#' This function is a wrapper to simplify usage of the \code{monster} function in
#' the case where the pair of regulatory networks to be contrasted have already
#' been estimated, either as \code{panda} objects, or represented as an
#' adjacency matrix with regulators in rows and genes in columns.
#'
#' @param exp_graph matrix or PANDA object (generated by \code{netzooR::panda}); if matrix, should be the adjacency matrix for the network with regulators in rows and genes in columns, both named. This should be the network for the experimental (case) group.
#' @param control_graph matrix or PANDA object (generated by \code{netzooR::panda}); if matrix, should be the adjacency matrix for the network with regulators in rows and genes in columns, both named. This should be the network for the control (reference) group.
#' @param nullPerms numeric; defaults to 1000. Number of null permutations to perform. See \code{monster} for more details.
#' @param numMaxCores numeric; defaults to 3. Maximum number of cores to use; will be the minimum of this number and the actual available cores. See \code{monster} for more details.
#' @param ... other arguments for \code{monster} may be passed.
#'
#' @return \code{monster} object
#' @export
#'
#' @examples
#'
#' \donttest{
#'
#' # Generating PANDA networks for demonstration:
#' # For the purposes of this example, first partition the pandaToyData samples, then perform panda:
#' pandaResult_exp <- panda(pandaToyData$motif, pandaToyData$expression[,1:25], pandaToyData$ppi)
#' pandaResult_control <- panda(pandaToyData$motif, pandaToyData$expression[,26:50], pandaToyData$ppi)
#'
#' # function takes both panda objects and matrices, or a mixture
#' monster_res1 <- domonster(pandaResult_exp, pandaResult_control, numMaxCores = 1)
#' monster_res2 <- domonster(pandaResult_exp@regNet, pandaResult_control@regNet, numMaxCores = 1)
#' monster_res3 <- domonster(pandaResult_exp@regNet, pandaResult_control, numMaxCores = 1)
#' }
domonster <- function(exp_graph, control_graph, nullPerms = 1000, numMaxCores = 3, ...){
if('panda' %in% class(exp_graph)){
exp_graph <- exp_graph@regNet
}
if('panda' %in% class(control_graph)){
control_graph <- control_graph@regNet
}
if(!identical(colnames(control_graph), colnames(exp_graph))){
genes_keep <- intersect(colnames(control_graph), colnames(exp_graph))
exp_graph <- exp_graph[,genes_keep]
control_graph <- control_graph[,genes_keep]
cat('\nNote: column names are not identical in the input; taking the intersection of them:\n')
cat(paste0(length(genes_keep), ' genes included \n'))
}
if(!identical(rownames(control_graph), rownames(exp_graph))){
reg_keep <- intersect(rownames(control_graph), rownames(exp_graph))
exp_graph <- exp_graph[reg_keep,]
control_graph <- control_graph[reg_keep,]
cat('\nNote: row names are not identical in the input; taking the intersection of them:\n')
cat(paste0(length(reg_keep), ' regulators included \n'))
}
combdf <- as.data.frame(cbind(control_graph, exp_graph))
combdes <- c(rep(0, ncol(control_graph)), rep(1, ncol(exp_graph)))
res <- monster(expr = combdf,
design = combdes,
motif = NA,
mode = 'regNet',
nullPerms = nullPerms,
numMaxCores = numMaxCores,
...)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.