context("test LIONESS result")
test_that("lionessPy() function works", {
# test 1: check test error message when empty inputs
expect_error(lionessPy())
unlink("lioness_output", recursive=TRUE)
# input file path
system("curl -O https://netzoo.s3.us-east-2.amazonaws.com/netZooR/example_datasets/expr4_200_L.txt")
T4_expression_file_path <- "./expr4_200_L.txt"
motif_file_path <- system.file("extdata", "chip_medium.txt", package = "netZooR", mustWork = TRUE)
ppi_file_path <- "./ppi_medium.txt"
# test 2: check message when only expression data input
#expect_message(lionessPy(T4_expression_file_path, end_sample=1, save_fmt='no', save_single_network=TRUE), regexp="motif network", fixed=TRUE)
# test 3: check message when PPI is not provided
#expect_message(lionessPy(T4_expression_file_path,motif_file_path, end_sample=1, save_fmt='no', save_single_network=TRUE), regexp="No PPI", fixed=TRUE)
# test 4: when all arguments are default, except end_sample = 1 to expedite computing.
# computing="cpu", precision="double", save_tmp=TRUE, modeProcess="union", remove_missing=FALSE, start_sample=1, end_sample=1, save_single_network=FALSE
#test1Lioness <- lionessPy(T4_expression_file_path, motif_file_path,ppi_file_path, end_sample=1, save_fmt='no', save_single_network=TRUE)
#expect_equal(test1Lioness[[1,3]],-0.06524757, tolerance=1e-5)
# test 5: check if LIONESS result is correct when arguments set as following:
# i.e computing = "cpu", save_memory =T , precision="single", save_tmp=F, keep_expression_matrix = T, modeProcess = 'intersection',remove_missing=FALSE, start_sample=1, end_sample=1, save_single_network=FALSE
#test2Lioness <- lionessPy(T4_expression_file_path, motif_file_path,ppi_file_path,precision = "single", save_tmp = F, modeProcess = "intersection",
# remove_missing=FALSE, start_sample=1, end_sample=1, save_single_network=TRUE, save_fmt='no')
#expect_equal(test2Lioness[[1,3]],2.015446, tolerance=1e-5)
# test 6: when processMode = legacy, remove_missing=FALSE
#test3Lioness <- lionessPy(T4_expression_file_path, motif_file_path,ppi_file_path,
# modeProcess = "legacy", remove_missing = FALSE,start_sample=1, end_sample=1, save_single_network=TRUE, save_fmt='no')
#expect_equal(test3Lioness[[1,3]],6.557087,tolerance=1e-5)
# test 7: when processMode = legacy, remove_missing=TRUE
#test4Lioness <- lionessPy(T4_expression_file_path, motif_file_path,ppi_file_path,
# modeProcess = "legacy", remove_missing = TRUE,start_sample=1, end_sample=1, save_single_network=TRUE, save_fmt='no')
#expect_equal(test4Lioness[[1,3]],-0.4557105,tolerance=1e-5)
})
test_that("lioness() function works for network.inference.method = 'panda'", {
data(pandaToyData)
#test5Lioness <- lioness(expr = pandaToyData$expression[,1:4],
# motif = pandaToyData$motif, ppi = pandaToyData$ppi, network.inference.method = 'panda')
#expect_equal(test5Lioness[[1]][1],-0.6704147,tolerance=1e-5)
})
test_that("lioness() function works for network.inference.method = 'pearson'", {
# create toy data
x1 = c(1,1,2,3)
x2 = c(1,2,3,4)
X = matrix(c(x1,x2),ncol=2,byrow=F)
# extract correlation networks needed for LIONESS
fullNet = cor(X)
subNet1 = cor(X[-1,])
subNet2 = cor(X[-2,])
subNet3 = cor(X[-3,])
subNet4 = cor(X[-4,])
# construct LIONESS sample-specific correlation networks manually
N = 4
ssNet1 = N*(fullNet-subNet1) + subNet1
ssNet2 = N*(fullNet-subNet2) + subNet2
ssNet3 = N*(fullNet-subNet3) + subNet3
ssNet4 = N*(fullNet-subNet4) + subNet4
# run LIONESS on the toy data
lionessNets = lioness(expr=t(X),network.inference.method="pearson")
# assert equal
# there is no file I/O or rounding here
# so differences should be machine zero in R
expect_equal(lionessNets[[1]],ssNet1,tolerance=1e-15)
expect_equal(lionessNets[[2]],ssNet2,tolerance=1e-15)
expect_equal(lionessNets[[3]],ssNet3,tolerance=1e-15)
expect_equal(lionessNets[[4]],ssNet4,tolerance=1e-15)
})
test_that("lioness() function throws appropriate error for undefined network.inference.method", {
# create toy data
x1 = c(1,1,2,3)
x2 = c(1,2,3,4)
X = matrix(c(x1,x2),ncol=2,byrow=F)
# run LIONESS on the toy data w/undefined method
expect_error(lioness(expr=t(X),network.inference.method="divination"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.