# Plot interactive Yearly Returns chart
plotYearlyRankings_hc <- function(dfReturns, outlineAsset = NA) {
dfCalReturns <- getCalendarReturns(dfReturns)
vAssets <- colnames(dfCalReturns)
if(!is.na(outlineAsset)) {
vAssets <- c(outlineAsset, vAssets[-which(vAssets == outlineAsset)])
}
dfCalReturns <- dfCalReturns %>%
tibble::rownames_to_column(var = "Year") %>%
mutate(Year = factor(Year)) %>%
gather(Asset, Return, -Year) %>%
group_by(Year) %>%
arrange(desc(Return)) %>%
mutate(Rank = factor(rank(-Return, ties.method="first")),
Return = format(round(Return, digits = 2), justify = 'right', nsmall = 2, scientific = F)) %>%
ungroup(Year) %>%
arrange(Year, Rank) %>%
mutate(Asset = factor(Asset, levels = vAssets))
# line colors
vColors <- getPlotColors("metro", F, length(vAssets))
# label and tooltip formats
label_format <- '<span style=\"font-weight:bold\">{series.name}</span><br/>'
tooltip_format <- '<span style=\"color:{series.color};font-weight:bold\">{series.name}</span>: <b>{point.Return}%</b><br/>'
hchart(type = "heatmap", dfCalReturns, hcaes(x = Rank, y = Year, group = Asset)) %>%
hc_colors(colors = vColors) %>%
hc_plotOptions(series = list(dataLabels = list(enabled = TRUE, color = "#FFFFFF", shadow = F, format = label_format))) %>%
hc_tooltip(pointFormat = tooltip_format, headerFormat = "") %>%
hc_yAxis(title = list(text = "")) %>%
hc_title(text = "Yearly Return Rankings") %>%
hc_legend(enabled = FALSE)
}
# Plot interactive Portfolio Weights chart
plotPortfolioWeights_hc <- function(dfWeights, plotTitle = "Portfolio Weights") {
vSecurities <- unique(dfWeights$SecurityID)
# Determine Cash Weights
dfWeightsFinal <- dfWeights %>%
select(-SignalDate) %>%
rename(Date = RebalanceDate) %>%
dplyr::filter(str_to_upper(SecurityID) != "CASH") %>%
mutate(Date = as.Date(as.character(Date)),
Weight = as.numeric(as.character(Weight))) %>%
group_by(Date, SecurityID) %>%
summarise(Weight = sum(Weight, na.rm = T)) %>%
ungroup() %>%
spread(SecurityID, Weight) %>%
mutate(Cash = 1 - rowSums(.[-1], na.rm = T)) %>%
gather(SecurityID, Weight, -Date) %>%
arrange(Date, SecurityID)
# Find unique security names and put Cash at the end
vSecurities <- unique(dfWeightsFinal$SecurityID)
vSecurities <- c(vSecurities[-which(str_to_upper(vSecurities) == "CASH")], "Cash")
dfWeightsFinal <- dfWeightsFinal %>%
mutate(SecurityID = factor(SecurityID, levels = vSecurities))
# column colors
vColors <- getPlotColors(palette = "weights", F, length(vSecurities))
tooltip_format <- '<span style=\"color:{series.color};font-weight:bold\">{series.name}</span>: <b>{point.percentage:.1f}%</b><br/>'
# plot portfolio weights
hchart(type = "area", dfWeightsFinal, hcaes(x = Date, y = Weight, group = SecurityID)) %>%
hc_chart(zoomType = "x") %>%
hc_colors(colors = vColors) %>%
hc_plotOptions(area = list(stacking = "percent", lineWidth = 1, marker = list(lineWidth = 1))) %>%
hc_xAxis(type = "datetime", title = list(text = "")) %>%
hc_yAxis(labels = list(format = "{value}%"), opposite = FALSE, showFirstLabel = FALSE) %>%
hc_tooltip(pointFormat = tooltip_format, shared = TRUE, backgroundColor = "#D3D3D3") %>%
hc_title(text = plotTitle)
}
# Plot interactive Correlations chart
# plotCorrelations_hc <- function(dfReturns, returnFrequency = c("monthly", "daily", "weekly"), plotTitle = NULL) {
#
# df <- dfReturns
# plotCaption <- ""
# if("Date" %in% colnames(df)) {
# df <- df %>% select(-Date)
# firstPerfDate <- as.Date(first(dfReturns$Date))
# lastPerfDate <- as.Date(last(dfReturns$Date))
# plotCaption <- paste(format(firstPerfDate,"%b %Y"), "-", format(lastPerfDate,"%b %Y"))
# }
#
# if(is.null(plotTitle)) {
# plotTitle <- str_to_title(glue::glue("Correlations of {returnFrequency[1]} Returns"))
# }
#
# mCor <- cor(df)
# mCor <- reorderCorrelationMatrix(mCor)
# diag(mCor) <- 0
#
# pointFormatter <- JS("function(){ return Highcharts.numberFormat(this.point.value, 2); }")
#
# lColorStops <- list(list(0, "#D11141"),
# list(0.5, "#F8F5F5"),
# list(1, "#00AEDB"))
#
# hchart(mCor) %>%
# hc_colorAxis(stops = NULL) %>%
# hc_colorAxis(min = -1, max = 1, stops = lColorStops, reversed = FALSE) %>%
# hc_title(text = plotTitle) %>%
# hc_caption(text = plotCaption, align = "center") %>%
# hc_legend(align = "right", layout = "vertical", verticalAlign = "middle") %>%
# hc_plotOptions(series = list(dataLabels = list(enabled = TRUE, formatter = pointFormatter)))
# }
plotCorrelations_hc <- function(dfReturns, returnFrequency = c("monthly", "daily", "weekly"), plotTitle = NULL) {
library(dplyr)
library(highcharter)
library(glue)
df <- dfReturns
plotCaption <- ""
# Set the caption if Date column exists
if ("Date" %in% colnames(df)) {
df <- df %>% select(-Date)
firstPerfDate <- as.Date(first(dfReturns$Date))
lastPerfDate <- as.Date(last(dfReturns$Date))
plotCaption <- paste(format(firstPerfDate, "%b %Y"), "-", format(lastPerfDate, "%b %Y"))
}
# Set the title if not provided
if (is.null(plotTitle)) {
plotTitle <- str_to_title(glue::glue("Correlations of {returnFrequency[1]} Returns"))
}
# Calculate correlation matrix and reorder it
mCor <- cor(df)
mCor <- reorderCorrelationMatrix(mCor)
# Set diagonal values to 1.1 to represent them as a unique color
diag(mCor) <- 1.01
# Define color stops, with 1.1 mapped to gray
lColorStops <- list(
list(0, "#D11141"), # Red for negative correlations
list(0.5, "#F8F5F5"), # White for zero correlation
list(1, "#00AEDB"), # Blue for positive correlations
list(1.01, "grey") # Gray for diagonal cells
)
# JavaScript formatter to hide text on diagonal cells
pointFormatter <- JS("
function() {
return (this.point.value === 1.01) ? '' : Highcharts.numberFormat(this.point.value, 2);
}
")
tooltipFormatter <- JS("
function() {
return (this.point.x === this.point.y) ?
(this.series.yAxis.categories[this.point.y] + ' ~ ' + this.series.xAxis.categories[this.point.x] + ': 1.00') :
(this.series.yAxis.categories[this.point.y] + ' ~ ' + this.series.xAxis.categories[this.point.x] + ': ' +
Highcharts.numberFormat(this.point.value, 2));
}
")
# Generate the heatmap
hchart(mCor, "heatmap") %>%
hc_colorAxis(
type = "linear",
min = -1,
max = 1, # Extend max to 1.1 to include diagonal cells
stops = lColorStops,
reversed = FALSE
) %>%
hc_title(text = plotTitle) %>%
hc_caption(text = plotCaption, align = "center") %>%
hc_legend(align = "right", layout = "vertical", verticalAlign = "middle") %>%
hc_plotOptions(series = list(dataLabels = list(enabled = TRUE, formatter = pointFormatter))) %>%
hc_tooltip(formatter = tooltipFormatter)
}
# Plot Correlations with confidence intervals in given time frames
plotCorrelationConfidenceIntervals_hc <- function(dfCor, plotTitle = "Correlations with confidence intervals") {
vTimeFrames <- unique(dfCor$time_frame)
vColors <- getPlotColors(palette = "main", n = length(vTimeFrames))
point_tooltip_format <- paste0('<span style="color: {series.color}; font-weight:bold; text-align: right">{series.name} </span>',
'<b>: {point.y}</b><br>')
errorbar_tooltip_format <- paste0('<span style="color: {series.color}; font-weight:bold; text-align: right">{series.name} </span>',
'<b>: {point.low} - {point.high}</b><br>')
highchart() %>%
hc_add_series(dfCor, type = "point", hcaes(x = predictor, y = estimate, group = time_frame),
color = vColors, tooltip = list(pointFormat = point_tooltip_format)) %>%
hc_add_series(dfCor, type = "errorbar", hcaes(x = predictor, low = conf.low, high = conf.high, group = time_frame),
color = vColors, tooltip = list(pointFormat = errorbar_tooltip_format)) %>%
hc_plotOptions(errorbar = list(pointWidth = 15)) %>%
hc_xAxis(type = "categorical", categories = dfCor$predictor) %>%
hc_yAxis(title = list(text = "Correlation")) %>%
hc_tooltip(shared = TRUE, split = FALSE, useHTML = TRUE, crosshairs = TRUE, valueDecimals = 2, headerFormat = "{point.key}<br>") %>%
hc_chart(inverted = TRUE) %>%
hc_title(text = plotTitle)
}
# Plot interactive Rolling Excess Returns
plotRollingExcessReturns_hc <- function(dfReturns, dfRecessions=NULL, coreStrategyName, baseBenchmarkName, rollingMonths) {
dfExcessReturns <- getRollingAnnualizedReturns(dfReturns, rollingMonths) %>%
mutate(ExcessReturn = !!sym(coreStrategyName) - !!sym(baseBenchmarkName),
ExcessReturn = ExcessReturn * 100)
# determine title text
plotTitle <- glue::glue("{coreStrategyName} Rolling Annualized Excess {rollingMonths} Months Returns Over {baseBenchmarkName}")
# tooltip format
tooltip_format <- "<span style=\"font-weight:bold\">{series.name}</span>: <b>{point.y:.2f}%</b><br/>"
# Zoom buttons
lZoomButtons <- list(list(type = "ytd", text = "YTD"), list(type = "year", count = 1, text = "1y"),
list(type = "year", count = 5, text = "5y"), list(type = "year", count = 10, text = "10y"),
list(type = "year", count = 20, text = "20y"), list(type = "all", text = "All"))
hcplot <- hchart(type = "area", dfExcessReturns, hcaes(x = Date, y = ExcessReturn),
name = "Excess Return", color = "#00CD00", negativeColor = "#CC0000") %>%
hc_chart(zoomType = "x") %>%
hc_rangeSelector(buttons = lZoomButtons, enabled = TRUE) %>%
hc_xAxis(type = "datetime", title = list(text = "")) %>%
hc_yAxis(labels = list(format = "{value}%"), opposite = FALSE) %>%
hc_title(text = plotTitle) %>%
hc_tooltip(pointFormat = tooltip_format, valueDecimals = 2)
# add Recessions bands
if(!is.null(dfRecessions)) {
hcplot <- plotAddRecessions_hc(hcplot, dfExcessReturns, dfRecessions)
}
hcplot
}
hc_tooltip_sorted <- function(hc, ...) {
# http://stackoverflow.com/a/16954666/829971
hc %>%
highcharter::hc_tooltip(
shared = TRUE,
formatter = JS(
'function(tooltip){
function isArray(obj) {
return Object.prototype.toString.call(obj) === "[object Array]";
}
function splat(obj) {
return isArray(obj) ? obj : [obj];
}
var items = this.points || splat(this), series = items[0].series, s;
// sort the values
items.sort(function(a, b){
return ((a.percentage < b.percentage) ? -1 : ((a.percentage > b.percentage) ? 1 : 0));
});
items.reverse();
return tooltip.defaultFormatter.call(this, tooltip);
}'
)
)
}
hc_tooltip_sorted_table <- function(hc, ...) {
hc <- hc_tooltip_sorted(hc)
if(length(list(...))) {
hc <- highcharter:::.hc_opt(hc, "tooltip", ...)
}
hc
}
# Plot interactive line chart
plotLines_hc <- function(dfIndicators, dfRecessions = NULL, palette_name = "withgrey") {
# exclude incomplete rows
dfIndicators <- dfIndicators %>% drop_na()
vColNames <- names(dfIndicators)[-1]
vColNames <- gsub(" ", ".", vColNames)
# compute cumulative returns
xtIndicators <- timetk::tk_xts(dfIndicators, date_var = Date, silent = TRUE)
# line colors
vColors <- getPlotColors(palette_name, F, length(vColNames))
# Zoom buttons
lZoomButtons <- list(list(type = "ytd", text = "YTD"), list(type = "year", count = 1, text = "1y"),
list(type = "year", count = 5, text = "5y"), list(type = "year", count = 10, text = "10y"),
list(type = "year", count = 20, text = "20y"), list(type = "year", count = 50, text = "50y"),
list(type = "all", text = "All"))
# tooltips
pointFormatter_perf <- paste0('<tr><td style="color: {series.color}; font-weight:bold">{series.name}: </td>',
'<td style="text-align: right"><b>{point.y:.2f}%</b></td></tr>')
# plot cumulative returns
hcplot <- highchart(type = "stock") %>%
hc_chart(zoomType = "x") %>%
hc_rangeSelector(buttons = lZoomButtons, enabled = TRUE,
buttonTheme = list(states = list(select = list(fill = "#3C8DBC", style = list(color = "#FFFFFF"))))) %>%
hc_navigator(enabled = FALSE) %>%
hc_scrollbar(enabled = FALSE) %>%
hc_xAxis(type = "datetime", title = list(text = "")) %>%
hc_yAxis(type = "percent", labels = list(format = "{value}%"), opposite = FALSE) %>%
hc_legend(enabled = TRUE) %>%
hc_tooltip(shared = TRUE, split = FALSE, useHTML = TRUE, sort = TRUE, table = TRUE,
xDateFormat = "%b %Y",
pointFormat = pointFormatter_perf)
for(i in seq_along(vColNames)) {
colName <- vColNames[i]
hcplot <- hcplot %>%
hc_add_series(xtIndicators[,colName], name = colName, marker = list(enabled = FALSE))
}
hcplot <- hcplot %>% hc_colors(vColors)
# add Recessions bands
if(!is.null(dfRecessions)) {
hcplot <- plotAddRecessions_hc(hcplot, dfIndicators, dfRecessions)
}
hcplot
}
# Plot interactive Returns chart
plotReturns_hc <- function(dfReturns, dfRecessions = NULL, returnFrequency = c("monthly", "daily", "weekly"), palette_name = "withgrey") {
# exclude incomplete rows
dfReturns <- dfReturns %>% drop_na()
vStrategyNames <- names(dfReturns)[-1]
vStrategyNames <- gsub(" ", ".", vStrategyNames)
# compute cumulative returns
dfCumReturns <- dfReturns %>% mutate_if(is_bare_double, function(Z) exp(cumsum(log(1 + Z))))
xtCumReturns <- timetk::tk_xts(dfCumReturns, date_var = Date, silent = TRUE)
# line colors
vColors <- getPlotColors(palette_name, F, length(vStrategyNames))
# Zoom buttons
lZoomButtons <- list(list(type = "ytd", text = "YTD"), list(type = "year", count = 1, text = "1y"),
list(type = "year", count = 5, text = "5y"), list(type = "year", count = 10, text = "10y"),
list(type = "year", count = 20, text = "20y"), list(type = "all", text = "All"))
# tooltips
pointFormatter_perf <- paste0('<tr><td style="color: {series.color}; font-weight:bold">{series.name}: </td>',
'<td style="text-align: right"><b>${point.change:.0f}</b></td></tr>')
date_formatter <- ifelse(returnFrequency[1] == "daily", "%A, %b %e, %Y", "%b %Y")
tooltip_formatter <- sprintf("
function() {
var s = '<b>' + Highcharts.dateFormat('%s', this.x) + '</b>';
s += '<table>';
var performancePoints = [];
this.points.forEach(function(point) {
performancePoints.push(point);
});
// Sort the performance points by change value
performancePoints.sort(function(a, b) {
return b.point.change - a.point.change;
});
if (performancePoints.length > 0) {
s += '<tr><td colspan=\"2\" style=\"font-weight:bold\">Growth of $100:</td></tr>';
performancePoints.forEach(function(point) {
s += '<tr><td style=\"font-weight:bold; color:' + point.series.color + '\">' + point.series.name + ': </td>' +
'<td style=\"text-align: right\">' + (point.point.change.toFixed(0) ? ('$' + point.point.change.toFixed(0)) : point.y.toFixed(0)) + '</td></tr>';
});
}
s += '</table>';
return s;
}
", date_formatter)
# plot cumulative returns
hcplot <- highchart(type = "chart") %>%
hc_chart(zoomType = "x") %>%
hc_rangeSelector(buttons = lZoomButtons, enabled = TRUE,
buttonTheme = list(states = list(select = list(fill = "#3C8DBC", style = list(color = "#FFFFFF"))))) %>%
hc_navigator(enabled = FALSE) %>%
hc_scrollbar(enabled = FALSE) %>%
hc_xAxis(type = "datetime", title = list(text = "")) %>%
hc_yAxis(type = "logarithmic", title = list(text = "Growth of $100"), labels = list(format = "${value}"), showFirstLabel = FALSE, opposite = FALSE) %>%
hc_legend(enabled = TRUE) %>%
hc_tooltip(
shared = TRUE,
useHTML = TRUE,
formatter = JS(tooltip_formatter)
)
for(i in seq_along(vStrategyNames)) {
strategyName <- vStrategyNames[i]
hcplot <- hcplot %>%
hc_add_series(xtCumReturns[,strategyName], name = strategyName,
compare = "percent", compareBase = 100,
tooltip = list(pointFormat = pointFormatter_perf),
marker = list(enabled = FALSE))
}
hcplot <- hcplot %>% hc_colors(vColors)
# add Recessions bands
if(!is.null(dfRecessions)) {
hcplot <- plotAddRecessions_hc(hcplot, dfReturns, dfRecessions)
}
hcplot
}
# Plot interactive Performance chart
plotPerformance_hc <- function(dfReturns, dfRecessions = NULL,
returnFrequency = c("monthly", "daily", "weekly"),
palette_name = "withgrey", plotTitle = "Cumulative Performance") {
dfReturns <- dfReturns %>% drop_na()
vStrategyNames <- names(dfReturns)[-1]
vStrategyNames <- gsub(" ", ".", vStrategyNames)
dfCumReturns <- dfReturns %>% as_tibble() %>% mutate_if(is_bare_double, function(Z) exp(cumsum(log(1 + Z))))
xtCumReturns <- timetk::tk_xts(dfCumReturns, date_var = Date, silent = TRUE)
dfDrawdowns <- dfReturns %>% as_tibble() %>%
mutate_if(is_bare_double, function(Z) suppressWarnings(as.vector(timeSeries::drawdowns(timeSeries::as.timeSeries(Z))))) %>%
mutate_if(is_bare_double, function(Z) Z * 100)
xtDrawdowns <- timetk::tk_xts(dfDrawdowns, date_var = Date, silent = TRUE)
vColors <- getPlotColors(palette_name, F, length(vStrategyNames))
lZoomButtons <- list(list(type = "ytd", text = "YTD"),
list(type = "year", count = 1, text = "1y"),
list(type = "year", count = 5, text = "5y"),
list(type = "year", count = 10, text = "10y"),
list(type = "year", count = 20, text = "20y"),
list(type = "all", text = "All"))
pointFormatter_perf <- paste0("<tr><td style=\"color: {series.color}; font-weight:bold\">{series.name}: </td>",
"<td style=\"text-align: right\"><b>${point.change:.0f}</b></td></tr>")
pointFormatter_dd <- paste0("<tr><td style=\"color: {series.color}; font-weight:bold\">{series.name}: </td>",
"<td style=\"text-align: right\"><b>{point.y:.2f}%</b></td></tr>")
tooltip_formatter <- paste0("
function() {
var s = '<b>' + Highcharts.dateFormat('%A, %b %e, %Y', this.x) + '</b>';
s += '<table>';
var performancePoints = [];
var drawdownPoints = [];
this.points.forEach(function(point) {
if (point.series.options.yAxis === 0) {
performancePoints.push(point);
} else if (point.series.options.yAxis === 1) {
drawdownPoints.push(point);
}
});
// Sort the performance points by change value
performancePoints.sort(function(a, b) {
return b.point.change - a.point.change;
});
// Sort the drawdown points by y value
drawdownPoints.sort(function(a, b) {
return b.y - a.y;
});
if (performancePoints.length > 0) {
s += '<tr><td colspan=\"2\" style=\"font-weight:bold\">Growth of $100:</td></tr>';
performancePoints.forEach(function(point) {
s += '<tr><td style=\"font-weight:bold; color:' + point.series.color + '\">' + point.series.name + ': </td>' +
'<td style=\"text-align: right\">' + (point.point.change.toFixed(0) ? ('$' + point.point.change.toFixed(0)) : point.y.toFixed(0)) + '</td></tr>';
});
}
if (drawdownPoints.length > 0) {
s += '<tr><td colspan=\"2\" style=\"font-weight:bold\">Drawdowns:</td></tr>';
drawdownPoints.forEach(function(point) {
s += '<tr><td style=\"font-weight:bold; color:' + point.series.color + '\">' + point.series.name + ': </td>' +
'<td style=\"text-align: right\">' + point.y.toFixed(2) + '%</td></tr>';
});
}
s += '</table>';
return s;
}
")
hcplot <- highchart(type = "chart") %>%
hc_chart(zoomType = "x") %>%
hc_yAxis_multiples(
list(top = "0%", height = "70%", type = "logarithmic",
title = list(text = "Growth of $100"), labels = list(format = "${value}"),
opposite = FALSE, showFirstLabel = FALSE),
list(top = "70%", height = "30%", type = "line",
title = list(text = "Drawdowns"), labels = list(format = "{value}%"), opposite = TRUE)
) %>%
hc_rangeSelector(buttons = lZoomButtons, enabled = TRUE) %>%
hc_xAxis(type = "datetime") %>%
hc_tooltip(
shared = TRUE,
useHTML = TRUE,
formatter = JS(tooltip_formatter)
) %>%
hc_title(text = plotTitle) %>%
hc_legend(enabled = TRUE)
# Add cumulative returns series
for (i in seq_along(vStrategyNames)) {
strategyName <- vStrategyNames[i]
hcplot <- hcplot %>% hc_add_series(
xtCumReturns[, strategyName],
yAxis = 0, name = strategyName,
tooltip = list(pointFormat = pointFormatter_perf),
id = glue::glue("{strategyName}_perf"),
compare = "percent", compareBase = 100,
marker = list(enabled = FALSE)
)
}
# Add drawdowns series
for (i in seq_along(vStrategyNames)) {
strategyName <- vStrategyNames[i]
hcplot <- hcplot %>% hc_add_series(
xtDrawdowns[, strategyName],
yAxis = 1, name = strategyName,
tooltip = list(pointFormat = pointFormatter_dd),
id = glue::glue("{strategyName}_dd"),
linkedTo = glue::glue("{strategyName}_perf"),
marker = list(enabled = FALSE)
)
}
hcplot <- hcplot %>% hc_colors(vColors)
if (!is.null(dfRecessions)) {
hcplot <- plotAddRecessions_hc(hcplot, dfReturns, dfRecessions)
}
hcplot
}
# plotPerformance_hc <- function(dfReturns, dfRecessions = NULL, returnFrequency = c("monthly", "daily", "weekly"), palette_name = "withgrey",
# plotTitle = "Cumulative Performance") {
# # exclude incomplete rows
# dfReturns <- dfReturns %>% drop_na()
# vStrategyNames <- names(dfReturns)[-1]
# vStrategyNames <- gsub(" ", ".", vStrategyNames)
#
# # compute cumulative returns
# dfCumReturns <- dfReturns %>% as_tibble() %>% mutate_if(is_bare_double, function(Z) exp(cumsum(log(1 + Z))))
# xtCumReturns <- timetk::tk_xts(dfCumReturns, date_var = Date, silent = TRUE)
#
# # compute drawdowns
# dfDrawdowns <- dfReturns %>%
# as_tibble() %>%
# mutate_if(is_bare_double, function(Z) suppressWarnings(as.vector(timeSeries::drawdowns(timeSeries::as.timeSeries(Z))))) %>%
# mutate_if(is_bare_double, function(Z) Z*100)
# xtDrawdowns <- timetk::tk_xts(dfDrawdowns, date_var = Date, silent = TRUE)
#
# # line colors
# vColors <- getPlotColors(palette_name, F, length(vStrategyNames))
#
# # Zoom buttons
# lZoomButtons <- list(list(type = "ytd", text = "YTD"), list(type = "year", count = 1, text = "1y"),
# list(type = "year", count = 5, text = "5y"), list(type = "year", count = 10, text = "10y"),
# list(type = "year", count = 20, text = "20y"), list(type = "all", text = "All"))
#
# # tooltips
# pointFormatter_perf <- paste0('<tr><td style="color: {series.color}; font-weight:bold">{series.name}: </td>',
# '<td style="text-align: right"><b>${point.change:.2f}</b></td></tr>')
# pointFormatter_dd <- paste0('<tr><td style="color: {series.color}; font-weight:bold">{series.name}: </td>',
# '<td style="text-align: right"><b>{point.y:.2f}%</b></td></tr>')
#
# # tooltip_format_perf <- "<span style=\"color:{series.color};font-weight:bold\">{series.name}</span>: <b>${point.change:.2f}</b><br/>"
# # tooltip_format_dd <- "<span style=\"color:{series.color};font-weight:bold\">{series.name}</span>: <b>{point.y:.2f}%</b><br/>"
#
# # plot cumulative returns and drawdowns
# hcplot <- highchart(type = "chart") %>%
# hc_chart(zoomType = "x") %>%
# hc_yAxis_multiples(list(top="0%", height="70%", type="logarithmic", title=list(text="Growth of $100"), labels=list(format="${value}"),
# opposite=FALSE, showFirstLabel=FALSE),
# list(top="70%", height="30%", type="line", title=list(text="Drawdowns"), labels=list(format="{value}%"),
# opposite=TRUE)) %>%
# hc_rangeSelector(buttons = lZoomButtons, enabled = TRUE) %>%
# hc_xAxis(type = "datetime") %>%
# hc_tooltip(shared = TRUE, split = FALSE, useHTML = TRUE, table = TRUE, sort = FALSE,
# xDateFormat = ifelse(returnFrequency[1] == "daily", "%b %d, %Y", "%b %Y")) %>%
# hc_title(text = plotTitle) %>%
# hc_legend(enabled = TRUE)
#
# for(i in seq_along(vStrategyNames)) {
# strategyName <- vStrategyNames[i]
# hcplot <- hcplot %>%
# hc_add_series(xtCumReturns[,strategyName], yAxis = 0, name = strategyName, tooltip = list(pointFormat = pointFormatter_perf),
# id = glue::glue("{strategyName}_perf"), compare = "percent", compareBase = 100, marker = list(enabled = FALSE))
# }
# for(i in seq_along(vStrategyNames)) {
# new_pointFormatter_dd <- pointFormatter_dd
# if(i == 1) {
# new_pointFormatter_dd <- paste0('<tr><td style="color: grey; font-weight:bold">Drawdowns: </td>',
# '<td style="text-align: right"></td></tr>',
# new_pointFormatter_dd)
# }
#
# strategyName <- vStrategyNames[i]
# hcplot <- hcplot %>%
# hc_add_series(xtDrawdowns[,strategyName], yAxis = 1, name = strategyName, tooltip = list(pointFormat = new_pointFormatter_dd),
# id = glue::glue("{strategyName}_dd"), linkedTo=glue::glue("{strategyName}_perf"),
# marker = list(enabled = FALSE))
# }
# hcplot <- hcplot %>% hc_colors(vColors)
#
# # add Recessions bands
# if(!is.null(dfRecessions)) {
# hcplot <- plotAddRecessions_hc(hcplot, dfReturns, dfRecessions)
# }
# hcplot
# }
# add Recession bands to highstock chart
plotAddRecessions_hc <- function(hcplot, dfReturns, dfRecessions) {
dfRect <- getRecessionIntervals(dfReturns, dfRecessions)
# create Recession bands
if(nrow(dfRect) > 0) {
lBands = list()
for(i in 1:nrow(dfRect)) {
dfRect_span <- dfRect[i,]
date_from <- dfRect_span$date_from %>% as.Date(tz = "UTC") %>% datetime_to_timestamp()
date_to <- dfRect_span$date_to %>% as.Date(tz = "UTC") %>% datetime_to_timestamp()
lBands[[i]] <- list(from = date_from, to = date_to, color = "#D3D3D3")
}
hcplot <- hcplot %>% hc_xAxis(plotBands = lBands)
}
hcplot
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.