GMW | R Documentation |
The Generalized modified Weibull distribution
GMW(mu.link = "log", sigma.link = "log", nu.link = "sqrt", tau.link = "sqrt")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
nu.link |
defines the nu.link, with "sqrt" link as the default for the nu parameter. |
tau.link |
defines the tau.link, with "sqrt" link as the default for the tau parameter. |
The Generalized modified Weibull distribution with parameters mu
,
sigma
, nu
and tau
has density given by
f(x)= \mu \sigma x^{\nu - 1}(\nu + \tau x) \exp(\tau x - \mu x^{\nu} e^{\tau x})
[1 - \exp(- \mu x^{\nu} e^{\tau x})]^{\sigma-1},
for x > 0.
Returns a gamlss.family object which can be used to fit a GMW distribution in the gamlss()
function.
dGMW
# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rGMW(n=100, mu=2, sigma=0.5, nu=2, tau=1.5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~ 1, family='GMW',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
(coef(mod, what='nu'))^2
(coef(mod, what='tau'))^2
# Example 2
# Generating random values under some model
## Not run:
n <- 1000
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(2 + -3 * x1)
sigma <- exp(3 - 2 * x2)
nu <- 2
tau <- 1.5
x <- rGMW(n=n, mu, sigma, nu, tau)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~ 1, family="GMW",
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
coef(mod, what="nu")^2
coef(mod, what="tau")^2
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.