rm(list=ls())
#load R functions
#library(devtools)
#install_github("PauloWhite/DelayedGSD")
#library(DelayedGSD)
sourceDir <- function(path, trace = TRUE, ...) {
for (nm in list.files(path, pattern = "[.][RrSsQq]$")) {
if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")
}
}
sourceDir("R")
source("Simulations/brice-biostat-cluster/FCT.R")
#parameters
method <- 1:3 # methods used to compute the boundaries
#--- to plan the trial ----
kMax <- 2 #max number of analyses (including final)
alpha <- 0.025 #type I error (one sided)
beta <- 0.2 #type II error
informationRates <- 0.54 #planned information rates
rho_alpha <- 2 # rho parameter for alpha error spending function
rho_beta <- 2 # rho parameter for beta error spending function
deltaPower <- 1.5 # effect (NOT Z-scale/unit, but outcome scale/unit!) that the study is powered for
sdPower <- 2.5 #sd of main outcome, used for power calculation
Id <- c(0.62,1) #(expected) information rate at each decision analysis
binding <- FALSE
cNotBelowFixedc <- TRUE
#
#---- to generate data -----------
#
block <- c(1,1,0,0)
allsd <- c(2.5,2.1,2.4) # sd, first from baseline measurement, then the two changes from baseline
mean0 <- c(10,0,0) # mean placebo group (again, first is absolute value, then change from baseline)
delta <- c(0,0.5,0.5) # treatment effect
delta <- c(0,0.2,0.2) # treatment effect
ar <- (0.86*2)*2 # orginial accrual rate from data from Corine is 0.86 per week, hence we multiply by 2 for by 14 days. As too low, we further multiply by 2
cor011 <- -0.15 # ~ from data from Corine
corij1 <- 0.68 # ~ from data from Corine
cor0j1 <- -0.27 # ~ from data from Corine
Miss11 <- 5/104 # miss both V1 and V2
Miss12 <- 1/104 # miss V1 and but not V2
Miss21 <- 6/104 # do not miss V1 and but miss V2
Miss22 <- 92/104 # miss none
MyMissProb <- matrix(c(Miss11,Miss12,Miss21,Miss22),ncol=2,nrow=2,byrow=TRUE, # to additionnally remove 1 more because some FASFL=N
dimnames = list(c("V1 missing","V1 not missing"), c("V2 missing","V2 not missing")))
PropForInterim <- 0.5 # Decide to have interim analysis when PropForInterim % of all subjects have had the chance to have one follow-up measurement recorded in the data to be available for analysis.
theDelta.t <- 1.50001 # time lag to process the data and make them ready to analyze after collecting them (unit is time between two follow-up visits)
TimeFactor <- 14 ## number of days between two visits
#
#sdPower <- sdPower*sqrt(1-cor0j1^2) #expected sd adjusted for correlation with baseline
n <- ceiling(2*2*((sdPower/deltaPower)^2)*(qnorm(1-beta)-qnorm(alpha))^2) #104 with Corine's data # should we choose ourselves or compute from the above numbers ???
# inflate SS as required for interim
#adjust for expected withdrawal
#n <- n/(1-(Miss11+Miss21))
n <- n/(1-0.18) #54/arm based on planned withdrawal rate
#if we do an interim after 50% of the patients has (had the chance to) complete the Day 28 visit, this means
ar*2
#more patients will be recruited while waiting for the last patient to complete. Half of these patients will contribute with at least one visit
#a rough estimate of the information fraction at interim could be
(n/2 + ar)/n
#so around 0.56
#the expected information at the decision analysis is around the following information fraction
(theDelta.t*ar+ar*2+n/2)/n #half of the patients recruited, plus those recruited during 28 days plus those recruited during 3 weeks data processing
#0.62
#planned boundaries
plannedB <- vector(mode = "list", length = 3)
for(iMeth in method){ ## iMeth <- 1
plannedB[[iMeth]] <- CalcBoundaries(kMax=kMax,
alpha=alpha,
beta=beta,
InfoR.i=informationRates,
InfoR.d=Id,
rho_alpha=rho_alpha,
rho_beta=rho_beta,
method=iMeth,
cNotBelowFixedc=cNotBelowFixedc,
bindingFutility=binding,
delta=deltaPower)
## summary(plannedB[[1]])
## coef(plannedB[[iMeth]], type = "information")
}
inflationFactor <- unlist(lapply(plannedB,function(iP){iP$planned$InflationFactor}))
nGSD <- ceiling(n*inflationFactor)
#correcting as in example t-test power calculation used, plus equal number per arm so cannot have uneven total sample size
nGSD <- c(116,116,116)
png("PlannedBndsExamplePaper.png")
plot(plannedB[[1]])
dev.off()
#generate data:
myseedi <- 56922#34513
res <- GenData(n=max(nGSD),
N.fw=2,
rand.block=block,
allsd=allsd,
mean0=mean0,
delta=delta,
ar=ar,
cor.01.1=cor011,
cor.ij.1=corij1,
cor.0j.1=cor0j1,
seed=myseedi,
MissProb=MyMissProb,
DigitsOutcome=2,
TimeFactor=TimeFactor,
DigitsTime=0)
d <- res$d
# Here we stop inclusion data collection for the interim analysis as soon as
# half of the participants have completed (or had the opportunity to complete) the follow-up
thets <- d$t3[ceiling(nGSD*PropForInterim)]
nX1.interim <- vector()
nX2.interim <- vector()
nX3.interim <- vector()
currentGSD <- vector(mode = "list", length = 3)
out.interim <- vector(mode = "list", length = 3)
for(iMeth in method){ ## iMeth <- 1
#iMeth <- 1
# {{{ make data available at interim
di <- SelectData(d,t=thets[iMeth])
nX1.interim[iMeth] <- sum(!is.na(di$X1))
nX2.interim[iMeth] = sum(!is.na(di$X2))
nX3.interim[iMeth] = sum(!is.na(di$X3))
## {{{ analyze data at at interim
## ** interim
lmmI <- analyzeData(di, ddf = "nlme", data.decision = sum(d$t1 <= thets[iMeth] + theDelta.t*TimeFactor), getinfo = TRUE, trace = TRUE)
## lmmI <- analyzeData(di, ddf = "nlme", getinfo = TRUE, trace = TRUE)
currentGSD[[iMeth]] <- update(plannedB[[iMeth]], delta = lmmI, trace = FALSE)
out.interim[[iMeth]] <- exportGSD(currentGSD[[iMeth]],
export.statistic = TRUE,
export.ML = TRUE,
export.MUE = FALSE,
export.info = TRUE,
export.predinfo = TRUE,
export.boundary = TRUE,
export.decision = TRUE)
}
png("InterimBndsExamplePaper.png")
plot(currentGSD[[1]])
dev.off()
out.decision <- vector(mode = "list", length = 3)
for(iMeth in method){ ## iMeth <- 1
## ** decision
dDecision <- d[which(d$t1 <= (thets[iMeth] + theDelta.t*TimeFactor)),]
lmmD <- analyzeData(dDecision, ddf = "nlme", getinfo = TRUE, trace = TRUE)
if(out.interim[[iMeth]]$decision == "stop"){
currentGSD[[iMeth]] <- update(currentGSD[[iMeth]], delta = lmmD, trace = FALSE)
## plot(currentGSD[[iMeth]])
out.decision[[iMeth]] <- exportGSD(currentGSD[[iMeth]],
export.statistic = TRUE,
export.ML = TRUE,
export.MUE = TRUE,
export.info = TRUE,
export.predinfo = FALSE,
export.boundary = TRUE,
export.decision = TRUE)
}else{
## update information
currentGSD[[iMeth]] <- update(currentGSD[[iMeth]], delta = lmmD, k = 1, type.k = "decision", trace = FALSE)
out.decision[[iMeth]] <- exportGSD(currentGSD[[iMeth]],
export.statistic = FALSE,
export.ML = FALSE,
export.MUE = FALSE,
export.info = TRUE,
export.predinfo = FALSE,
export.boundary = TRUE,
export.decision = FALSE)
}
}
FinalPvalue(2.846514,
2.55245,
1.959964,
1.739491,
1.085299,
2.261545,
"futility",
kMax=2,
delta=0,
estimate=0.3476515,
method=1,
bindingFutility=TRUE,
cNotBelowFixedc=TRUE,
continuity.correction=TRUE)
FinalPvalue(2.846514,
2.55245,
1.959964,
1.923053,
1.047626,
2.216121,
"futility",
kMax=2,
delta=0,
estimate=0.3476515,
method=3,
bindingFutility=TRUE,
cNotBelowFixedc=TRUE,
continuity.correction=TRUE)
png("DecisionBndsExamplePaper.png")
plot(currentGSD[[1]])
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.