tests/testthat/test_joint_inference.R

context("Testing inference procedure using a simple logistic model with joint proposals")

test_that("Inference on simulated data with known inits. ", {
  #testthat::skip_on_cran()
  # define logistic model
  logistic_model <- function(time, y, parms) {
    with(as.list(c(y, parms)), {
      dN <- r * N * (1 - N / K)
      list(dN)
    })
  }
  testthat::expect_true(exists("logistic_model"))
  # set initial value for simulation
  y <- c(N = 0.1)
  # set parameter values
  parms <- c(r = 0.1, K = 10)
  # set simulation time points
  times <- seq(0, 120, 1)
  # solve ODE
  out <- ode(y, times, logistic_model, parms, method='lsoda')
  # sample from simulated data
  set.seed(143)
  N_obs <- as.data.frame(out[c(1,runif(35, 0, nrow(out))),]) #force include the first time-point (t=0)
  # add lognormal noise
  parms['logsd.N'] <- 0.01
  N_obs$N_noisy <- rlnorm(nrow(N_obs), log(N_obs$N),(parms['logsd.N']))
  # observations must be ordered for solver to work
  N_obs <- N_obs[order(N_obs$time),]

  # define an observation model
  # NB: lognormal errors are not great really for the obs model - should be changed to sth that actually allows N to be zero instead of using epsilon correction
  logistic_obs_model<-function(data, sim.data, samp){

    llik.N<-sum(dlnorm(data$N_noisy, meanlog=log(sim.data[,"N"]+1e-6), sdlog=samp[['logsd.N']], log=TRUE))

    llik<-llik.N

    return(llik)
  }

  r <- debinfer_par(name = "r", var.type = "de", fixed = FALSE,
                    value = 0.5, prior="norm", hypers=list(mean = 0, sd = 1),
                    prop.var=5e-5, samp.type="rw", joint="sigma1")

  K <- debinfer_par(name = "K", var.type = "de", fixed = FALSE,
                    value = 5, prior="lnorm", hypers=list(meanlog = 1, sdlog = 1),
                    prop.var=0.1, samp.type="rw", joint="sigma1")

  #define covariance matrix
  sigma1 <- debinfer_cov(c("r", "K"), sigma = matrix(c(5e-05, -1e-05,-1e-05,  1e-03),2, byrow = TRUE), name = "sigma1")

  logsd.N <- debinfer_par(name = "logsd.N", var.type = "obs", fixed = FALSE,
                          value = 1, prior="lnorm", hypers=list(meanlog = 0, sdlog = 1),
                          prop.var=c(1,2), samp.type="rw-unif")

  #we also need to provide an initial condition for the DE
  N <- debinfer_par(name = "N", var.type = "init", fixed = TRUE,
                    value = 0.1)


  mcmc.pars <- setup_debinfer(r, K, logsd.N, N, sigma1)

  # do inference with deBInfer
  # MCMC iterations
  iter = 15000
  # define burnin
  burnin = 10000
  # inference call

  mcmc_samples <- de_mcmc(N = iter, data=N_obs, de.model=logistic_model, obs.model=logistic_obs_model, all.params=mcmc.pars,
                          Tmax = max(N_obs$time), data.times=N_obs$time, cnt=iter+1,
                          plot=FALSE, sizestep=0.1, solver=1)
  #add more tests here checking the integrity & contents of the returned data structure
  #check accuracy of estimation (threshold is 1% of true de parameter value and 10% of true observation noise)
  expect_equal(unname(mean(mcmc_samples$samples[burnin:iter,"r"])/parms["r"]),1,tolerance = 1e-2)
  expect_equal(unname(mean(mcmc_samples$samples[burnin:iter,"K"])/parms["K"]),1,tolerance = 1e-2)
  expect_equal(unname(mean(mcmc_samples$samples[burnin:iter,"logsd.N"])/parms["logsd.N"]),1,tolerance = 1e-1)

  #test utility function for checking results class
  expect_equal(is.debinfer_result(mcmc_samples), TRUE)

  #test extractor functions
  expect_equal(deinits(mcmc_samples), c(N=0.1))
  expect_equal(depars(mcmc_samples), c(r=0.5, K=5))

})
pboesu/debinfer documentation built on April 20, 2018, 4:34 a.m.