#' Calculate conditional AIC
#'
#' Calculates the conditional Akaike Information criterion (cAIC).
#'
#' @param object Output from [sdmTMB()].
#' @param what Whether to return the cAIC or the effective degrees of freedom
#' (EDF) for each group of random effects.
#' @param ... Other arguments for specific methods. Not used.
#'
#' @details cAIC is designed to optimize the expected out-of-sample predictive
#' performance for new data that share the same random effects as the in-sample
#' (fitted) data, e.g., spatial interpolation. In this sense, it should be a
#' fast approximation to optimizing the model structure based on k-fold
#' cross-validation.
#'
#' By contrast, [AIC()] calculates the marginal Akaike Information Criterion,
#' which is designed to optimize expected predictive performance for new data
#' that have new random effects, e.g., extrapolation, or inference about
#' generative parameters.
#'
#' cAIC also calculates the effective degrees of freedom (EDF) as a byproduct.
#' This is the number of fixed effects that would have an equivalent impact on
#' model flexibility as a given random effect.
#'
#' Both cAIC and EDF are calculated using Eq. 6 of Zheng, Cadigan, and Thorson
#' (2024).
#'
#' For models that include profiled fixed effects, these profiles are turned
#' off.
#'
#' @return
#' Either the cAIC or the effective degrees of freedom (EDF) by group
#' of random effects depending on the argument `what`.
#'
#' @references
#' **Deriving the general approximation to cAIC used here:**
#'
#' Zheng, N., Cadigan, N., & Thorson, J. T. (2024).
#' A note on numerical evaluation of conditional Akaike information for
#' nonlinear mixed-effects models (arXiv:2411.14185). arXiv.
#' \doi{10.48550/arXiv.2411.14185}
#'
#' **The utility of EDF to diagnose hierarchical model behaviour:**
#'
#' Thorson, J. T. (2024). Measuring complexity for hierarchical
#' models using effective degrees of freedom. Ecology,
#' 105(7), e4327 \doi{10.1002/ecy.4327}
#'
#' @examples
#' mesh <- make_mesh(dogfish, c("X", "Y"), cutoff = 15)
#' fit <- sdmTMB(catch_weight ~ s(log(depth)),
#' time_varying = ~1,
#' time_varying_type = "ar1",
#' time = "year",
#' spatiotemporal = "off",
#' mesh = mesh,
#' family = tweedie(),
#' data = dogfish,
#' offset = log(dogfish$area_swept)
#' )
#' cAIC(fit)
#' cAIC(fit, what = "EDF")
#' AIC(fit)
#' @export
cAIC <- function(object, what = c("cAIC", "EDF"), ...) {
UseMethod("cAIC", object)
}
#' @exportS3Method
cAIC.sdmTMB <- function(object, what = c("cAIC", "EDF"), ...) {
what <- tolower(what)
what <- match.arg(what, choices = c("caic", "edf"))
if ("edf" %in% names(object) && what == "edf") {
return(object$edf)
}
tmb_data <- object$tmb_data
## Ensure profile = NULL
if (is.null(object$control$profile)) {
obj <- object$tmb_obj
} else {
obj <- TMB::MakeADFun(
data = tmb_data,
parameters = object$parlist,
map = object$tmb_map,
random = object$tmb_random,
DLL = "sdmTMB",
profile = NULL #<
)
}
## Make obj_new
tmb_data$weights_i[] <- 0
obj_new <- TMB::MakeADFun(
data = tmb_data,
parameters = object$parlist,
map = object$tmb_map,
random = object$tmb_random,
DLL = "sdmTMB",
profile = NULL
)
par <- obj$env$parList()
parDataMode <- obj$env$last.par
indx <- obj$env$lrandom()
q <- sum(indx)
p <- length(object$model$par)
## use '-' for Hess because model returns negative loglikelihood
if (is.null(object$tmb_random)) {
cli_inform(c("This model has no random effects.", "cAIC and EDF only apply to models with random effects."))
return(invisible(NULL))
}
Hess_new <- -Matrix::Matrix(obj_new$env$f(parDataMode, order = 1, type = "ADGrad"), sparse = TRUE)
Hess_new <- Hess_new[indx, indx] ## marginal precision matrix of REs
## Joint hessian etc
Hess <- -Matrix::Matrix(obj$env$f(parDataMode, order = 1, type = "ADGrad"), sparse = TRUE)
Hess <- Hess[indx, indx]
negEDF <- Matrix::diag(Matrix::solve(Hess, Hess_new, sparse = FALSE))
if (what == "caic") {
jnll <- obj$env$f(parDataMode)
cnll <- jnll - obj_new$env$f(parDataMode)
cAIC_out <- 2 * cnll + 2 * (p + q) - 2 * sum(negEDF)
return(cAIC_out)
} else if (what == "edf") {
## Figure out group for each random-effect coefficient
group <- names(object$last.par.best[obj$env$random])
convert_bsmooth2names <- function(object, model = 1) {
sn <- row.names(print_smooth_effects(object, m = model, silent = TRUE)$smooth_sds)
sn <- gsub("^sd", "", sn)
dms <- object$smoothers$sm_dims
unlist(lapply(seq_along(dms), \(i) rep(sn[i], dms[i])))
}
s_groups <- convert_bsmooth2names(object)
# smoothers always shared in delta models
if (is_delta(object)) s_groups <- c(paste0("1LP-", s_groups), paste0("2LP-", s_groups))
group[group == "b_smooth"] <- s_groups
group <- factor(group)
## Calculate total EDF by group
EDF <- tapply(negEDF, INDEX = group, FUN = length) - tapply(negEDF, INDEX = group, FUN = sum)
return(EDF)
} else {
cli_abort("Option not implemented")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.