View source: R/sc_clustering_methods.R
sc_clustering.sc3 | R Documentation |
Perform Single Cell data clustering using SC3 clustering pipeline
sc_clustering.sc3( exprs, Ks, type = c("counts", "normcounts"), colData = NULL, rowData = NULL, estimate.k = FALSE, scale.factor = 10000, build.hierarchical.tree = FALSE, ... )
exprs |
n.genes-by-n.cells expression matrix |
Ks |
vector of resolution, number of clusters |
type |
string, type of the expression matrix, choices are 'counts', 'normcounts' and 'logcounts', and default by 'counts' |
colData |
a dataframe containing cell informations |
rowData |
a dataframe containing gene informations |
estimate.k |
boolean, whether to estimate optimal number of clusters by sc3 |
scale.factor |
scalar sets the scale factor for cell-level normalization |
build.hierarchical.tree |
boolean, whether to obtain HAC results using SC3 |
... |
other parameters input to |
a list containing
an SingleCellExperiment object containing all the clustering results
hclust object resulted from hierarchical agglomerative clustering using obtained by SC3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.