sc_clustering.soup: Perform Single Cell data clustering using SOUP

View source: R/sc_clustering_methods.R

sc_clustering.soupR Documentation

Perform Single Cell data clustering using SOUP

Description

Perform Single Cell data clustering using SOUP

Usage

sc_clustering.soup(
  exprs,
  Ks,
  type = c("count", "log"),
  estimate.k = FALSE,
  pure.prop = 0.5,
  ext.prop = NULL,
  scale.factor = 10000,
  column.prefix = "soup_"
)

Arguments

exprs

n.genes-by-n.cells expression matrix

Ks

vector of resolution, number of clusters

type

string, type of the expression matrix, choices are 'count' and 'log', and default by 'counts'

estimate.k

boolean, whether to estimate optimal number of clusters by soup

pure.prop

the proportion of pure cells, SOUP parameter

ext.prop

the proportion of extreme neighbors for each cell, SOUP parameter

scale.factor

scalar sets the scale factor for cell-level normalization

column.prefix

string, output column prefix, default 'soup_'

Value

a list containing

labelmat

a data frame, columns are clusterings for each resolution specified

est.k

integer, estimated number of clusters


pengminshi/MRtree documentation built on March 6, 2023, 4:20 p.m.