sc_clustering.umap_kmeans: Perform Single Cell data clustering using UMAP+kmeans

View source: R/sc_clustering_methods.R

sc_clustering.umap_kmeansR Documentation

Perform Single Cell data clustering using UMAP+kmeans

Description

Perform Single Cell data clustering using UMAP+kmeans

Usage

sc_clustering.umap_kmeans(
  exprs,
  Ks,
  type = c("count", "log"),
  estimate.k = FALSE,
  subsample = FALSE,
  subsample.ratio = 0.9,
  scale.factor = 10000,
  n.neighbors = 30,
  n.components = 2,
  column.prefix = "umapkmeans_",
  n.cores = 1
)

Arguments

exprs

n.genes-by-n.cells expression matrix

Ks

vector of resolution, number of clusters

type

string, type of the expression matrix, choices are 'count' and 'log', and default by 'counts'

estimate.k

boolean whether to estimate optimal number of clusters by ADPclust

subsample

whether perform subsampling for each clustering

subsample.ratio

ratio of subsampled size to the total sample size (applicable when subsample=TRUE)

scale.factor

scalar sets the scale factor for cell-level normalization

n.neighbors

integer, number of neighbors to consider when build neighbor graph, default 30

n.components

integer, UMAP output dimensionality, default 2

column.prefix

string, output column prefix, default 'tsnekmeans_'

n.cores

number of cores used for parallel computation

Value

a list containing

labelmat

a data frame, columns are clusterings for each resolution specified

est.k

integer, estimated number of clusters


pengminshi/MRtree documentation built on March 6, 2023, 4:20 p.m.