View source: R/sc_clustering_methods.R
sc_clustering.umap_kmeans | R Documentation |
Perform Single Cell data clustering using UMAP+kmeans
sc_clustering.umap_kmeans( exprs, Ks, type = c("count", "log"), estimate.k = FALSE, subsample = FALSE, subsample.ratio = 0.9, scale.factor = 10000, n.neighbors = 30, n.components = 2, column.prefix = "umapkmeans_", n.cores = 1 )
exprs |
n.genes-by-n.cells expression matrix |
Ks |
vector of resolution, number of clusters |
type |
string, type of the expression matrix, choices are 'count' and 'log', and default by 'counts' |
estimate.k |
boolean whether to estimate optimal number of clusters by ADPclust |
subsample |
whether perform subsampling for each clustering |
subsample.ratio |
ratio of subsampled size to the total sample size (applicable when subsample=TRUE) |
scale.factor |
scalar sets the scale factor for cell-level normalization |
n.neighbors |
integer, number of neighbors to consider when build neighbor graph, default 30 |
n.components |
integer, UMAP output dimensionality, default 2 |
column.prefix |
string, output column prefix, default 'tsnekmeans_' |
n.cores |
number of cores used for parallel computation |
a list containing
a data frame, columns are clusterings for each resolution specified
integer, estimated number of clusters
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.