View source: R/sc_clustering_methods.R
sc_clustering.seurat | R Documentation |
Perform Single Cell data clustering using Seurat
sc_clustering.seurat( counts, resolutions, metadata = NULL, min.cells = 0, min.features = 0, scale.factor = 10000, vars.to.regress = NULL, find.variable.features = T, npcs = 40, seurat.graph.algorithm = 1, build.hierarchical.tree = FALSE, return.seurat.object = FALSE, verbose = FALSE )
counts |
n.genes-by-n.cells count matrix |
resolutions |
vector of clustering resolution paramers (input for FindClusters) |
metadata |
a data frame containing all the cell informations (equivalent to colData) |
min.cells |
integer, include features detected in at least this number cells |
min.features |
integer, include cells where at least this number features are detected |
scale.factor |
scalar, sets the scale factor for cell-level normalization |
vars.to.regress |
a vector of strings, variables to regress out |
find.variable.features |
T: find highly variable features using 'mean.var.plot', if >1: find variable features using 'vst' to get find.variable.features genes. F: not genes selection is performed |
npcs |
integer, number of principal component to calculate. The PCS are used for build neighbor graph |
seurat.graph.algorithm |
algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python. |
build.hierarchical.tree |
boolean, whether to build hierarchical tree using HAC
from Seurat clusters with |
return.seurat.object |
boolean, whether to return Seurat object. Save memory by setting it to |
verbose |
boolean, whether to print messages |
a list containing
a data frame containing all clusteringS as columns with prefix 'RNA_snn_res.'
Seurat object before clustering is performed
hclust object resulted from hierarchical agglomerative clustering
using Seurat clusters from max(resolutions)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.