##' @include abstracts.R parameters.R
##' @export
QhatModel.homo.normal.linear <- setClass(
# Set the name for the class
"QhatModel.homo.normal.linear",
package='hydroState',
contains=c('QhatModel'),
# Define the slots
slots = c(
input.data = "data.frame",
nStates = 'numeric',
use.truncated.dist = 'logical',
parameters = "parameters"
),
# Set the default values for the slots. (optional)
prototype=list(
input.data = data.frame(year=c(0),month=c(0),precipitation=c(0)),
nStates = Inf,
use.truncated.dist=T,
parameters = new('parameters',c('mean.a0', 'mean.a1','std.a0'),c(1,1,1))
)
)
# Valid object?
validObject <- function(object) {
TRUE
}
setValidity("QhatModel.homo.normal.linear", validObject)
# Initialise object
#setGeneric(name="initialize",def=function(.Object,input.data){standardGeneric("initialize")})
setMethod("initialize","QhatModel.homo.normal.linear", function(.Object, input.data, use.truncated.dist=T, transition.graph=matrix(T,2,2),
state.dependent.mean.a0=T, state.dependent.mean.a1=F, state.dependent.mean.trend=NA, state.dependent.std.a0=T) {
.Object@input.data <- input.data
.Object@use.truncated.dist = use.truncated.dist
.Object@nStates = ncol(transition.graph)
# Set the number of parameter values per parameter name and set up model terms for mean and standard deviation and trend.
if (is.na(state.dependent.mean.trend)) {
parameter.length <- as.numeric(c(state.dependent.mean.a0, state.dependent.mean.a1, state.dependent.std.a0)) * (.Object@nStates-1) + 1
.Object@parameters = new('parameters', c('mean.a0', 'mean.a1', 'std.a0'), parameter.length)
} else {
parameter.length <- as.numeric(c(state.dependent.mean.a0, state.dependent.mean.a1, state.dependent.mean.trend, state.dependent.std.a0)) * (.Object@nStates-1) + 1
.Object@parameters = new('parameters', c('mean.a0', 'mean.a1', 'mean.trend', 'std.a0'), parameter.length)
}
validObject(.Object)
.Object
}
)
setGeneric(name="get.SeaonalityPeriod",def=function(.Object,input.data){standardGeneric("get.SeaonalityPeriod")})
setMethod("get.SeaonalityPeriod","QhatModel.homo.normal.linear", function(.Object, input.data) {
if (any(names(input.data)=="month")) {
# Find seasonal period.
# Adapted from https://stackoverflow.com/questions/12824931/measure-the-periodicity-of-a-sequence-of-numbers-r
ii <- 0
while (TRUE) {
ii <- ii + 1
LAG <- sum((diff(input.data$month, lag = ii) == 0) - 1)
if (LAG == 0) { break }
}
seasonal.step.size = ii
# Check seaonality is number of AR terms.
if (seasonal.step.size<=1)
stop(paste('The period of seasonality is', seasonal.step.size, ' input data rows. It must be greater than the maximum AR trm for the model.'))
# Check seaonality is sensible.
if (seasonal.step.size>12)
warning(paste('The period of seasonality is', seasonal.step.size, ' input data rows. The module is designed for <=12 (i.e. monthly or less frequent).'))
} else {
seasonal.step.size = 0
}
return(seasonal.step.size)
}
)
# Get transition matrix with no input data.
setMethod(f="getEmissionDensity",
signature=c("QhatModel.homo.normal.linear","data.frame"),
definition=function(.Object, data, cumProb.threshold.Qhat)
{
# Check Qhat is in data
if (!any(names(data)=="Qhat.flow"))
stop('Input "data" must be a a data frame with a variable named "Qhat.flow".')
if (!any(names(data)=="Qhat.precipitation"))
stop('Input "data" must be a a data frame with a variable named "Qhat.precipitation".')
# Get the moments
markov.mean = getMean(.Object, data)
markov.variance = getVariance(.Object, data)
markov.stds <- sqrt(markov.variance)
# For truncated flow, the mean must >=0 else very negative means can arise
if (.Object@use.truncated.dist && any(markov.mean<0,na.rm = T) ) {
P = matrix(Inf, nrow(markov.mean), .Object@nStates)
#markov.mean = pmax(0, markov.mean,na.rm = T)
}
# Calculate probabilities.
P <- matrix(NA, nrow(data),.Object@nStates)
# Set the lower limit of a truncated normal dist.
lowerX = -Inf;
if (.Object@use.truncated.dist)
lowerX = 0;
# get the prob.
if (!all(is.na(cumProb.threshold.Qhat))) {
if (length(cumProb.threshold.Qhat)!=nrow(data))
stop('The length of cumProb.threshold.Qhat must equal the number of rows of input data')
for (i in 1:.Object@nStates) {
P[,i] = ptruncnorm(cumProb.threshold.Qhat[i], a=lowerX, mean=markov.mean[,i], sd=markov.stds[,i])
}
} else {
for (i in 1:.Object@nStates) {
P[,i] = dtruncnorm(data$Qhat.flow, a=lowerX, mean=markov.mean[,i], sd=markov.stds[,i])
}
}
return(P)
}
)
setMethod(f="getDistributionPercentiles",
signature=c("QhatModel.homo.normal.linear","data.frame","numeric"),
definition=function(.Object, data, precentiles=c(0.5, 0.95))
{
# Check data is a data frame
if (!is.data.frame(data))
stop('Input "data" must be a a data frame.')
# Check Qhat is in data
if (!any(names(data)=="Qhat.flow"))
stop('Input "data" must be a a data frame with a variable named "Qhat.flow".')
# Get the moments
markov.mean = getMean(.Object, data)
markov.variance = getVariance(.Object, data)
markov.stds <- sqrt(markov.variance)
# Initialise returned variable
est = vector('list',length(precentiles))
# Set the lower limit of a truncated normal dist.
lowerX = -Inf;
if (.Object@use.truncated.dist)
lowerX = 0;
# Calculate probabilities.
for (i in 1:length(precentiles)) {
est.tmp = matrix(0,nrow(markov.mean),ncol(markov.mean))
for (j in 1:.Object@nStates) {
est.tmp[,j] <- qtruncnorm(precentiles[i], a=lowerX, mean= markov.mean[,j], sd=markov.stds[,j])
}
est[[i]] = est.tmp
}
names(est) = precentiles
return(est)
}
)
# Calculate the transformed flow at the mean annual precip
setGeneric(name="getMean",def=function(.Object, data) {standardGeneric("getMean")})
setMethod(f="getMean",signature=c("QhatModel.homo.normal.linear","data.frame"),definition=function(.Object, data)
{
# Get object parameter list
parameters = getParameters(.Object@parameters)
ncols.a1 = length(parameters$mean.a1)
ncols.a0 = length(parameters$mean.a0)
ncols.trend = 0
if ('mean.trend' %in% names(parameters)) {
ncols.trend = length(parameters$mean.trend)
}
nrows = length(data$Qhat.precipitation);
ncols.max = max(c(ncols.a0 ,ncols.a1, ncols.trend))
if (ncols.max > .Object@nStates)
stop(paste('The number of parameters for each term of the mean model must must equal 1 or the number of states of ',.Object@nStates))
# Check which terms are uniform for all states and whic terms are unique
# to each state.
if (ncols.a0==1 || ncols.a0==.Object@nStates) {
a0.est = matrix(rep(parameters$mean.a0,each=nrows),nrows,.Object@nStates);
} else if (ncols.a0<.Object@nStates) {
stop(paste('The number of parameters for the a0 term of the mean model must must equal 1 or the number of states of ',.Object@nStates))
}
if (ncols.a1==1 || ncols.a1==.Object@nStates) {
a1.est = matrix(rep(parameters$mean.a1,each=nrows),nrows,.Object@nStates);
} else if (ncols.a1<.Object@nStates) {
stop(paste('The number of parameters for the a1 term of the mean model must must equal 1 or the number of states of ',.Object@nStates))
}
if (ncols.trend==1 || ncols.trend==.Object@nStates) {
trend.est = matrix(rep(parameters$mean.trend,each=nrows),nrows,.Object@nStates);
} else {
trend.est = 0
}
time.vals = matrix(data$year - data$year[1],nrows,.Object@nStates)
precip.data = matrix(data$Qhat.precipitation,nrows,.Object@nStates);
# Calculate the non-AR1 componants
a0.est <- 100 * a0.est
Qhat.model <- precip.data * a1.est + a0.est + time.vals * trend.est
# print(paste('...DBG getMean.AR0 nrows Qhat.model.NAs:',nrow(Qhat.model)))
return(Qhat.model)
}
)
# Get variance. It is calculates as a parameter times the Qhat variance.
setGeneric(name="getVariance",def=function(.Object, data) {standardGeneric("getVariance")})
setMethod(f="getVariance",signature=c("QhatModel.homo.normal.linear","data.frame"),definition=function(.Object, data)
{
# Get object parameter list
parameters = getParameters(.Object@parameters)
ncols.a0 = length(parameters$std.a0)
nrows = length(data$Qhat.precipitation);
# Get variance of the Qhat
Qhat.var = var(data$Qhat.flow, na.rm=T)
a0.est = Qhat.var * matrix(rep(parameters$std.a0,each=nrows),nrows,.Object@nStates);
#precip.data = rep(.Object@input.data$Qhat.precipitation,1,ncols.a0);
return(a0.est)
}
)
setMethod(f="generate.sample.Qhat.fromViterbi",signature=c("QhatModel.homo.normal.linear",'data.frame','numeric'),definition=function(.Object, data, viterbi.states)
{
if (length(viterbi.states) != nrow(data))
stop('The length of the viterbi.states must equal the number of rows in data.')
# Generate a synthtic series of Qhat usng the input random series of states
nSamples = length(viterbi.states)
sample.Qhat = rep(0,nSamples)
markov.mean = getMean(.Object, data)
markov.variance = getVariance(.Object, data)
if (nrow(markov.mean)!=nSamples)
stop('The input vector of sample states must equal the numer of rows of the input data.')
# Set the lower limit of a truncated normal dist.
lowerX = -Inf;
if (.Object@use.truncated.dist)
lowerX = 0;
for (i in 1:nSamples)
sample.Qhat[i] = rtruncnorm(1, a=lowerX, mean = markov.mean[i,viterbi.states[i]], sd = sqrt(markov.variance[i,viterbi.states[i]]))
return(sample.Qhat)
}
)
setMethod(f="generate.sample.Qhat",signature="QhatModel.homo.normal.linear",definition=function(.Object, data, nSamples)
{
if (length(nSamples)!=1 || nSamples<=0)
stop('The input nSamples must be a single number >=1.')
# Get distribution for each state
markov.mean = getMean(.Object, data)
markov.variance = getVariance(.Object, data)
# Set the lower limit of a truncated normal dist.
lowerX = -Inf;
if (.Object@use.truncated.dist)
lowerX = 0;
sample.Qhat = vector('list',.Object@nStates)
for (i in 1:.Object@nStates) {
sample.Qhat[[i]] = matrix(NA,nrow(data),nSamples)
for (j in 1:nrow(data)) {
sample.Qhat[[i]][j,] = rtruncnorm(nSamples, a=lowerX, mean = markov.mean[j,i], sd = sqrt(markov.variance[j,i]))
}
}
return(sample.Qhat)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.