#' Site level JRF - network connecting sites. It excludes connection between sites from the same gene
#'
#' MAIN FUNCTION -- > iJRFNet
importance <- function(x, scale=TRUE) {
# --- Function importance is a modified version of function importance from R package randomForest
type=NULL;
class=NULL;
if (!inherits(x, "randomForest"))
stop("x is not of class randomForest")
classRF <- x$type != "regression"
hasImp <- !is.null(dim(x$importance)) || ncol(x$importance) == 1
hasType <- !is.null(type)
if (hasType && type == 1 && !hasImp)
stop("That measure has not been computed")
allImp <- is.null(type) && hasImp
if (hasType) {
if (!(type %in% 1:2)) stop("Wrong type specified")
if (type == 2 && !is.null(class))
stop("No class-specific measure for that type")
}
imp <- x$importance
if (hasType && type == 2) {
if (hasImp) imp <- imp[, ncol(imp), drop=FALSE]
} else {
if (scale) {
SD <- x$importanceSD
imp[, -ncol(imp)] <-
imp[, -ncol(imp), drop=FALSE] /
ifelse(SD < .Machine$double.eps, 1, SD)
}
if (!allImp) {
if (is.null(class)) {
## The average decrease in accuracy measure:
imp <- imp[, ncol(imp) - 1, drop=FALSE]
} else {
whichCol <- if (classRF) match(class, colnames(imp)) else 1
if (is.na(whichCol)) stop(paste("Class", class, "not found."))
imp <- imp[, whichCol, drop=FALSE]
}
}
}
imp<-imp[,2]
imp
}
# --- Functions called by iJRFNet
"iJRF_onetarget" <-
function(x, y=NULL, xtest=NULL, ytest=NULL, ntree,
sampsize,
totsize = if (replace) ncol(x) else ceiling(.632*ncol(x)),
mtry=if (!is.null(y) && !is.factor(y))
max(floor(nrow(x)/3), 1) else floor(sqrt(nrow(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes=NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, nclasses, sw,...) {
ww=1/sampsize;
nclass=mylevels=ipi=NULL
addclass <- is.null(y)
classRF <- addclass || is.factor(y)
if (!classRF && length(unique(y)) <= 5) {
warning("The response has five or fewer unique values. Are you sure you want to do regression?")
}
if (classRF && !addclass && length(unique(y)) < 2)
stop("Need at least two classes to do classification.")
n <- ncol(y) # number of samples
p <- nrow(x)/nclasses # number of variables
if (n == 0) stop("data (x) has 0 rows")
x.row.names <- rownames(x)
x.col.names <- if (is.null(colnames(x))) 1:ncol(x) else colnames(x)
keep.forest=!is.null(y)
xtest=NULL; ytest=NULL
testdat <- !is.null(xtest)
if (testdat) {
if (ncol(x) != ncol(xtest))
stop("x and xtest must have same number of columns")
ntest <- nrow(xtest)
xts.row.names <- rownames(xtest)
}
prox <- proxts <- double(1)
## Check for NAs.
if (any(is.na(x))) stop("NA not permitted in predictors")
if (testdat && any(is.na(xtest))) stop("NA not permitted in xtest")
if (any(is.na(y))) stop("NA not permitted in response")
if (!is.null(ytest) && any(is.na(ytest))) stop("NA not permitted in ytest")
if (is.data.frame(x)) {
xlevels <- lapply(x, mylevels)
ncat <- sapply(xlevels, length)
## Treat ordered factors as numerics.
ncat <- ifelse(sapply(x, is.ordered), 1, ncat)
x <- data.matrix(x)
if(testdat) {
if(!is.data.frame(xtest))
stop("xtest must be data frame if x is")
xfactor <- which(sapply(xtest, is.factor))
if (length(xfactor) > 0) {
for (i in xfactor) {
if (any(! levels(xtest[[i]]) %in% xlevels[[i]]))
stop("New factor levels in xtest not present in x")
xtest[[i]] <-
factor(xlevels[[i]][match(xtest[[i]], xlevels[[i]])],
levels=xlevels[[i]])
}
}
xtest <- data.matrix(xtest)
}
} else {
ncat <- rep(1, p)
xlevels <- as.list(rep(0, p))
}
maxcat <- max(ncat)
if (maxcat > 32)
stop("Can not handle categorical predictors with more than 32 categories.")
addclass <- FALSE
proximity <- addclass
impout <- matrix(0.0, p*nclasses, 2)
impSD <- matrix(0.0, p*nclasses, 1)
# names(impSD) <- x.col.names
nsample <- if (addclass) 2 * n else n
Stratify <- length(n) > 1
nodesize=5;
nrnodes <- 2 * trunc(n/max(1, nodesize - 4)) + 1
maxnodes=NULL
if (!is.null(maxnodes)) {
## convert # of terminal nodes to total # of nodes
maxnodes <- 2 * maxnodes - 1
if (maxnodes > nrnodes) warning("maxnodes exceeds its max value.")
nrnodes <- min(c(nrnodes, max(c(maxnodes, 1))))
}
## Compiled code expects variables in rows and observations in columns.
# x <- t(x)
storage.mode(x) <- "double"
xtest <- double(1)
ytest <- double(1)
ntest <- 1
labelts <- FALSE
nt <- if (keep.forest) ntree else 1
nPerm=1
do.trace=F; oob.prox=F
corr.bias=FALSE
keep.inbag=FALSE
impmat <- double(1)
replace=T
rfout <- .C("iJRF_regRF",
x,
y, ww,
as.integer(c(totsize, p)),
sampsize=as.integer(sampsize), as.integer(totsize),
as.integer(nodesize),
as.integer(nrnodes),
as.integer(ntree),
as.integer(mtry),
as.integer(c(importance, localImp, nPerm)),
as.integer(ncat),
as.integer(maxcat),
as.integer(do.trace),
as.integer(proximity),
as.integer(oob.prox),
as.integer(corr.bias),
ypred = double(n * nclasses),
impout = impout,
impmat = impmat,
impSD = impSD,
prox = prox,
ndbigtree = integer(ntree),
nodestatus = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
leftDaughter = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
rightDaughter = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
nodepred = matrix(double(nrnodes * nt * nclasses), ncol=nt),
bestvar = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
xbestsplit = matrix(double(nrnodes * nt * nclasses), ncol=nt),
mse = double(ntree * nclasses),
keep = as.integer(c(keep.forest, keep.inbag)),
replace = as.integer(replace),
testdat = as.integer(testdat),
xts = xtest,
ntest = as.integer(ntest),
yts = as.double(ytest),
labelts = as.integer(labelts),
ytestpred = double(ntest),
proxts = proxts,
msets = double(if (labelts) ntree else 1),
coef = double(2),
oob.times = integer(n),
inbag = if (keep.inbag)
matrix(integer(n * ntree), n) else integer(1), as.integer(nclasses),
sw = as.double(sw))[c(16:28, 36:41)]
# ## Format the forest component, if present.
if (keep.forest) {
max.nodes <- max(rfout$ndbigtree)
rfout$nodestatus <-
rfout$nodestatus[1:max.nodes, , drop=FALSE]
rfout$bestvar <-
rfout$bestvar[1:max.nodes, , drop=FALSE]
rfout$nodepred <-
rfout$nodepred[1:max.nodes, , drop=FALSE]
rfout$xbestsplit <-
rfout$xbestsplit[1:max.nodes, , drop=FALSE]
rfout$leftDaughter <-
rfout$leftDaughter[1:max.nodes, , drop=FALSE]
rfout$rightDaughter <-
rfout$rightDaughter[1:max.nodes, , drop=FALSE]
}
cl <- match.call()
cl[[1]] <- as.name("randomForest")
# ## Make sure those obs. that have not been OOB get NA as prediction.
ypred <- rfout$ypred
if (any(rfout$oob.times < 1)) {
ypred[rfout$oob.times == 0] <- NA
}
out <- list(call = cl,
type = "regression",
predicted =0,
mse = rfout$mse,
rsq = 1 - rfout$mse / (var(y[1,]) * (n-1) / n),
oob.times = rfout$oob.times,
importance = if (importance) matrix(rfout$impout, p * nclasses, 2) else
matrix(rfout$impout, ncol=1),
importanceSD=if (importance) rfout$impSD else NULL,
localImportance = if (localImp)
matrix(rfout$impmat, p, n, dimnames=list(x.col.names,
x.row.names)) else NULL,
proximity = if (proximity) matrix(rfout$prox, n, n,
dimnames = list(x.row.names, x.row.names)) else NULL,
ntree = ntree,
mtry = mtry,
forest = if (keep.forest)
c(rfout[c("ndbigtree", "nodestatus", "leftDaughter",
"rightDaughter", "nodepred", "bestvar",
"xbestsplit")],
list(ncat = ncat), list(nrnodes=max.nodes),
list(ntree=ntree), list(xlevels=xlevels)) else NULL,
coefs = if (corr.bias) rfout$coef else NULL,
y = y,
test = if(testdat) {
list(predicted = structure(rfout$ytestpred,
names=xts.row.names),
mse = if(labelts) rfout$msets else NULL,
rsq = if(labelts) 1 - rfout$msets /
(var(ytest) * (n-1) / n) else NULL,
proximity = if (proximity)
matrix(rfout$proxts / ntree, nrow = ntest,
dimnames = list(xts.row.names,
c(xts.row.names,
x.row.names))) else NULL)
} else NULL,
inbag = if (keep.inbag)
matrix(rfout$inbag, nrow(rfout$inbag),
dimnames=list(x.row.names, NULL)) else NULL)
# print(rfout$mse)
class(out) <- "randomForest"
return(out)
}
"irafnet_onetarget" <-
function(x, y=NULL, xtest=NULL, ytest=NULL, ntree,
mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes=NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, sw) {
addclass <- is.null(y)
classRF <- addclass || is.factor(y)
if (!classRF && length(unique(y)) <= 5) {
warning("The response has five or fewer unique values. Are you sure you want to do regression?")
}
if (classRF && !addclass && length(unique(y)) < 2)
stop("Need at least two classes to do classification.")
n <- nrow(x)
p <- ncol(x)
if (n == 0) stop("data (x) has 0 rows")
x.row.names <- rownames(x)
x.col.names <- if (is.null(colnames(x))) 1:ncol(x) else colnames(x)
## overcome R's lazy evaluation:
keep.forest <- keep.forest
testdat <- !is.null(xtest)
if (testdat) {
if (ncol(x) != ncol(xtest))
stop("x and xtest must have same number of columns")
ntest <- nrow(xtest)
xts.row.names <- rownames(xtest)
}
## Make sure mtry is in reasonable range.
if (mtry < 1 || mtry > p)
warning("invalid mtry: reset to within valid range")
mtry <- max(1, min(p, round(mtry)))
if (!is.null(y)) {
if (length(y) != n) stop("length of response must be the same as predictors")
addclass <- FALSE
} else {
if (!addclass) addclass <- TRUE
y <- factor(c(rep(1, n), rep(2, n)))
x <- rbind(x, x)
}
## Check for NAs.
if (any(is.na(x))) stop("NA not permitted in predictors")
if (testdat && any(is.na(xtest))) stop("NA not permitted in xtest")
if (any(is.na(y))) stop("NA not permitted in response")
if (!is.null(ytest) && any(is.na(ytest))) stop("NA not permitted in ytest")
ncat <- rep(1, p)
xlevels <- as.list(rep(0, p))
maxcat <- max(ncat)
if (maxcat > 32)
stop("Can not handle categorical predictors with more than 32 categories.")
if (classRF) {
nclass <- length(levels(y))
## Check for empty classes:
if (any(table(y) == 0)) stop("Can't have empty classes in y.")
if (!is.null(ytest)) {
if (!is.factor(ytest)) stop("ytest must be a factor")
if (!all(levels(y) == levels(ytest)))
stop("y and ytest must have the same levels")
}
if (missing(cutoff)) {
cutoff <- rep(1 / nclass, nclass)
} else {
if (sum(cutoff) > 1 || sum(cutoff) < 0 || !all(cutoff > 0) ||
length(cutoff) != nclass) {
stop("Incorrect cutoff specified.")
}
if (!is.null(names(cutoff))) {
if (!all(names(cutoff) %in% levels(y))) {
stop("Wrong name(s) for cutoff")
}
cutoff <- cutoff[levels(y)]
}
}
if (!is.null(classwt)) {
if (length(classwt) != nclass)
stop("length of classwt not equal to number of classes")
## If classwt has names, match to class labels.
if (!is.null(names(classwt))) {
if (!all(names(classwt) %in% levels(y))) {
stop("Wrong name(s) for classwt")
}
classwt <- classwt[levels(y)]
}
if (any(classwt <= 0)) stop("classwt must be positive")
ipi <- 1
} else {
classwt <- rep(1, nclass)
ipi <- 0
}
} else addclass <- FALSE
if (missing(proximity)) proximity <- addclass
if (proximity) {
prox <- matrix(0.0, n, n)
proxts <- if (testdat) matrix(0, ntest, ntest + n) else double(1)
} else {
prox <- proxts <- double(1)
}
if (localImp) {
importance <- TRUE
impmat <- matrix(0, p, n)
} else impmat <- double(1)
if (importance) {
if (nPerm < 1) nPerm <- as.integer(1) else nPerm <- as.integer(nPerm)
if (classRF) {
impout <- matrix(0.0, p, nclass + 2)
impSD <- matrix(0.0, p, nclass + 1)
} else {
impout <- matrix(0.0, p, 2)
impSD <- double(p)
names(impSD) <- x.col.names
}
} else {
impout <- double(p)
impSD <- double(1)
}
nsample <- if (addclass) 2 * n else n
Stratify <- length(sampsize) > 1
if ((!Stratify) && sampsize > nrow(x)) stop("sampsize too large")
if (Stratify && (!classRF)) stop("sampsize should be of length one")
if (classRF) {
if (Stratify) {
if (missing(strata)) strata <- y
if (!is.factor(strata)) strata <- as.factor(strata)
nsum <- sum(sampsize)
if (length(sampsize) > nlevels(strata))
stop("sampsize has too many elements.")
if (any(sampsize <= 0) || nsum == 0)
stop("Bad sampsize specification")
## If sampsize has names, match to class labels.
if (!is.null(names(sampsize))) {
sampsize <- sampsize[levels(strata)]
}
if (any(sampsize > table(strata)))
stop("sampsize can not be larger than class frequency")
} else {
nsum <- sampsize
}
nrnodes <- 2 * trunc(nsum / nodesize) + 1
} else {
## For regression trees, need to do this to get maximal trees.
nrnodes <- 2 * trunc(sampsize/max(1, nodesize - 4)) + 1
}
if (!is.null(maxnodes)) {
## convert # of terminal nodes to total # of nodes
maxnodes <- 2 * maxnodes - 1
if (maxnodes > nrnodes) warning("maxnodes exceeds its max value.")
nrnodes <- min(c(nrnodes, max(c(maxnodes, 1))))
}
## Compiled code expects variables in rows and observations in columns.
x <- t(x)
storage.mode(x) <- "double"
if (testdat) {
xtest <- t(xtest)
storage.mode(xtest) <- "double"
if (is.null(ytest)) {
ytest <- labelts <- 0
} else {
labelts <- TRUE
}
} else {
xtest <- double(1)
ytest <- double(1)
ntest <- 1
labelts <- FALSE
}
nt <- if (keep.forest) ntree else 1
rfout <- .C("iRafNet_regRF",
x,
as.double(y),
as.integer(c(n, p)),
as.integer(sampsize),
as.integer(nodesize),
as.integer(nrnodes),
as.integer(ntree),
as.integer(mtry),
as.integer(c(importance, localImp, nPerm)),
as.integer(ncat),
as.integer(maxcat),
as.integer(do.trace),
as.integer(proximity),
as.integer(oob.prox),
as.integer(corr.bias),
ypred = double(n),
impout = impout,
impmat = impmat,
impSD = impSD,
prox = prox,
ndbigtree = integer(ntree),
nodestatus = matrix(integer(nrnodes * nt), ncol=nt),
leftDaughter = matrix(integer(nrnodes * nt), ncol=nt),
rightDaughter = matrix(integer(nrnodes * nt), ncol=nt),
nodepred = matrix(double(nrnodes * nt), ncol=nt),
bestvar = matrix(integer(nrnodes * nt), ncol=nt),
xbestsplit = matrix(double(nrnodes * nt), ncol=nt),
mse = double(ntree),
keep = as.integer(c(keep.forest, keep.inbag)),
replace = as.integer(replace),
testdat = as.integer(testdat),
xts = xtest,
ntest = as.integer(ntest),
yts = as.double(ytest),
labelts = as.integer(labelts),
ytestpred = double(ntest),
proxts = proxts,
msets = double(if (labelts) ntree else 1),
coef = double(2),
oob.times = integer(n),
inbag = if (keep.inbag)
matrix(integer(n * ntree), n) else integer(1), sw = as.double(sw))[c(16:28, 36:41)]
## Format the forest component, if present.
if (keep.forest) {
max.nodes <- max(rfout$ndbigtree)
rfout$nodestatus <-
rfout$nodestatus[1:max.nodes, , drop=FALSE]
rfout$bestvar <-
rfout$bestvar[1:max.nodes, , drop=FALSE]
rfout$nodepred <-
rfout$nodepred[1:max.nodes, , drop=FALSE]
rfout$xbestsplit <-
rfout$xbestsplit[1:max.nodes, , drop=FALSE]
rfout$leftDaughter <-
rfout$leftDaughter[1:max.nodes, , drop=FALSE]
rfout$rightDaughter <-
rfout$rightDaughter[1:max.nodes, , drop=FALSE]
}
cl <- match.call()
cl[[1]] <- as.name("randomForest")
## Make sure those obs. that have not been OOB get NA as prediction.
ypred <- rfout$ypred
if (any(rfout$oob.times < 1)) {
ypred[rfout$oob.times == 0] <- NA
}
out <- list(call = cl,
type = "regression",
predicted = structure(ypred, names=x.row.names),
mse = rfout$mse,
rsq = 1 - rfout$mse / (var(y) * (n-1) / n),
oob.times = rfout$oob.times,
importance = if (importance) matrix(rfout$impout, p, 2,
dimnames=list(x.col.names,
c("%IncMSE","IncNodePurity"))) else
matrix(rfout$impout, ncol=1,
dimnames=list(x.col.names, "IncNodePurity")),
importanceSD=if (importance) rfout$impSD else NULL,
localImportance = if (localImp)
matrix(rfout$impmat, p, n, dimnames=list(x.col.names,
x.row.names)) else NULL,
proximity = if (proximity) matrix(rfout$prox, n, n,
dimnames = list(x.row.names, x.row.names)) else NULL,
ntree = ntree,
mtry = mtry,
forest = if (keep.forest)
c(rfout[c("ndbigtree", "nodestatus", "leftDaughter",
"rightDaughter", "nodepred", "bestvar",
"xbestsplit")],
list(ncat = ncat), list(nrnodes=max.nodes),
list(ntree=ntree), list(xlevels=xlevels)) else NULL,
coefs = if (corr.bias) rfout$coef else NULL,
y = y,
test = if(testdat) {
list(predicted = structure(rfout$ytestpred,
names=xts.row.names),
mse = if(labelts) rfout$msets else NULL,
rsq = if(labelts) 1 - rfout$msets /
(var(ytest) * (n-1) / n) else NULL,
proximity = if (proximity)
matrix(rfout$proxts / ntree, nrow = ntest,
dimnames = list(xts.row.names,
c(xts.row.names,
x.row.names))) else NULL)
} else NULL,
inbag = if (keep.inbag)
matrix(rfout$inbag, nrow(rfout$inbag),
dimnames=list(x.row.names, NULL)) else NULL)
class(out) <- "randomForest"
return(out)
}
"JRF_onetarget" <-
function(x, y=NULL, xtest=NULL, ytest=NULL, ntree,
sampsize,
totsize = if (replace) ncol(x) else ceiling(.632*ncol(x)),
mtry=if (!is.null(y) && !is.factor(y))
max(floor(nrow(x)/3), 1) else floor(sqrt(nrow(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes=NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, nclasses, ...) {
ww=1/sampsize;
nclass=mylevels=ipi=sw=NULL
addclass <- is.null(y)
classRF <- addclass || is.factor(y)
if (!classRF && length(unique(y)) <= 5) {
warning("The response has five or fewer unique values. Are you sure you want to do regression?")
}
if (classRF && !addclass && length(unique(y)) < 2)
stop("Need at least two classes to do classification.")
n <- ncol(y) # number of samples
p <- nrow(x)/nclasses # number of variables
if (n == 0) stop("data (x) has 0 rows")
x.row.names <- rownames(x)
x.col.names <- if (is.null(colnames(x))) 1:ncol(x) else colnames(x)
keep.forest=!is.null(y)
xtest=NULL; ytest=NULL
testdat <- !is.null(xtest)
if (testdat) {
if (ncol(x) != ncol(xtest))
stop("x and xtest must have same number of columns")
ntest <- nrow(xtest)
xts.row.names <- rownames(xtest)
}
prox <- proxts <- double(1)
## Check for NAs.
if (any(is.na(x))) stop("NA not permitted in predictors")
if (testdat && any(is.na(xtest))) stop("NA not permitted in xtest")
if (any(is.na(y))) stop("NA not permitted in response")
if (!is.null(ytest) && any(is.na(ytest))) stop("NA not permitted in ytest")
if (is.data.frame(x)) {
xlevels <- lapply(x, mylevels)
ncat <- sapply(xlevels, length)
## Treat ordered factors as numerics.
ncat <- ifelse(sapply(x, is.ordered), 1, ncat)
x <- data.matrix(x)
if(testdat) {
if(!is.data.frame(xtest))
stop("xtest must be data frame if x is")
xfactor <- which(sapply(xtest, is.factor))
if (length(xfactor) > 0) {
for (i in xfactor) {
if (any(! levels(xtest[[i]]) %in% xlevels[[i]]))
stop("New factor levels in xtest not present in x")
xtest[[i]] <-
factor(xlevels[[i]][match(xtest[[i]], xlevels[[i]])],
levels=xlevels[[i]])
}
}
xtest <- data.matrix(xtest)
}
} else {
ncat <- rep(1, p)
xlevels <- as.list(rep(0, p))
}
maxcat <- max(ncat)
if (maxcat > 32)
stop("Can not handle categorical predictors with more than 32 categories.")
addclass <- FALSE
proximity <- addclass
impout <- matrix(0.0, p*nclasses, 2)
impSD <- matrix(0.0, p*nclasses, 1)
# names(impSD) <- x.col.names
nsample <- if (addclass) 2 * n else n
Stratify <- length(n) > 1
nodesize=5;
nrnodes <- 2 * trunc(n/max(1, nodesize - 4)) + 1
maxnodes=NULL
if (!is.null(maxnodes)) {
## convert # of terminal nodes to total # of nodes
maxnodes <- 2 * maxnodes - 1
if (maxnodes > nrnodes) warning("maxnodes exceeds its max value.")
nrnodes <- min(c(nrnodes, max(c(maxnodes, 1))))
}
## Compiled code expects variables in rows and observations in columns.
# x <- t(x)
storage.mode(x) <- "double"
xtest <- double(1)
ytest <- double(1)
ntest <- 1
labelts <- FALSE
nt <- if (keep.forest) ntree else 1
nPerm=1
do.trace=F; oob.prox=F
corr.bias=FALSE
keep.inbag=FALSE
impmat <- double(1)
replace=T
rfout <- .C("JRF_regRF",
x,
y, ww,
as.integer(c(totsize, p)),
sampsize=as.integer(sampsize), as.integer(totsize),
as.integer(nodesize),
as.integer(nrnodes),
as.integer(ntree),
as.integer(mtry),
as.integer(c(importance, localImp, nPerm)),
as.integer(ncat),
as.integer(maxcat),
as.integer(do.trace),
as.integer(proximity),
as.integer(oob.prox),
as.integer(corr.bias),
ypred = double(n * nclasses),
impout = impout,
impmat = impmat,
impSD = impSD,
prox = prox,
ndbigtree = integer(ntree),
nodestatus = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
leftDaughter = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
rightDaughter = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
nodepred = matrix(double(nrnodes * nt * nclasses), ncol=nt),
bestvar = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
xbestsplit = matrix(double(nrnodes * nt * nclasses), ncol=nt),
mse = double(ntree * nclasses),
keep = as.integer(c(keep.forest, keep.inbag)),
replace = as.integer(replace),
testdat = as.integer(testdat),
xts = xtest,
ntest = as.integer(ntest),
yts = as.double(ytest),
labelts = as.integer(labelts),
ytestpred = double(ntest),
proxts = proxts,
msets = double(if (labelts) ntree else 1),
coef = double(2),
oob.times = integer(n),
inbag = if (keep.inbag)
matrix(integer(n * ntree), n) else integer(1), as.integer(nclasses))[c(16:28, 36:41)]
# ## Format the forest component, if present.
if (keep.forest) {
max.nodes <- max(rfout$ndbigtree)
rfout$nodestatus <-
rfout$nodestatus[1:max.nodes, , drop=FALSE]
rfout$bestvar <-
rfout$bestvar[1:max.nodes, , drop=FALSE]
rfout$nodepred <-
rfout$nodepred[1:max.nodes, , drop=FALSE]
rfout$xbestsplit <-
rfout$xbestsplit[1:max.nodes, , drop=FALSE]
rfout$leftDaughter <-
rfout$leftDaughter[1:max.nodes, , drop=FALSE]
rfout$rightDaughter <-
rfout$rightDaughter[1:max.nodes, , drop=FALSE]
}
cl <- match.call()
cl[[1]] <- as.name("randomForest")
# ## Make sure those obs. that have not been OOB get NA as prediction.
ypred <- rfout$ypred
if (any(rfout$oob.times < 1)) {
ypred[rfout$oob.times == 0] <- NA
}
out <- list(call = cl,
type = "regression",
predicted =0,
mse = rfout$mse,
rsq = 1 - rfout$mse / (var(y[1,]) * (n-1) / n),
oob.times = rfout$oob.times,
importance = if (importance) matrix(rfout$impout, p * nclasses, 2) else
matrix(rfout$impout, ncol=1),
importanceSD=if (importance) rfout$impSD else NULL,
localImportance = if (localImp)
matrix(rfout$impmat, p, n, dimnames=list(x.col.names,
x.row.names)) else NULL,
proximity = if (proximity) matrix(rfout$prox, n, n,
dimnames = list(x.row.names, x.row.names)) else NULL,
ntree = ntree,
mtry = mtry,
forest = if (keep.forest)
c(rfout[c("ndbigtree", "nodestatus", "leftDaughter",
"rightDaughter", "nodepred", "bestvar",
"xbestsplit")],
list(ncat = ncat), list(nrnodes=max.nodes),
list(ntree=ntree), list(xlevels=xlevels)) else NULL,
coefs = if (corr.bias) rfout$coef else NULL,
y = y,
test = if(testdat) {
list(predicted = structure(rfout$ytestpred,
names=xts.row.names),
mse = if(labelts) rfout$msets else NULL,
rsq = if(labelts) 1 - rfout$msets /
(var(ytest) * (n-1) / n) else NULL,
proximity = if (proximity)
matrix(rfout$proxts / ntree, nrow = ntest,
dimnames = list(xts.row.names,
c(xts.row.names,
x.row.names))) else NULL)
} else NULL,
inbag = if (keep.inbag)
matrix(rfout$inbag, nrow(rfout$inbag),
dimnames=list(x.row.names, NULL)) else NULL)
# print(rfout$mse)
class(out) <- "randomForest"
return(out)
}
"iJRF_sitelevel_parallel" <-
function(X, W=NULL,ntree=NULL,mtry=NULL,genes.name=NULL,parallel,site.name=NULL) {
p<-dim(X[[1]])[1];
num.par<-parallel[1]; num.targets<-parallel[2]
if (is.null(mtry)) mtry=sqrt(p)
if (is.null(ntree)) ntree=1000
if (is.null(site.name)) site.name=paste("G",seq(1,p),sep="")
nclasses<-length(X)
sampsize<-rep(0,nclasses)
index.target<-c(round(p/num.targets)*(num.par-1)+1,round(p/num.targets)*num.par);
if (index.target[2]>p) index.target[2]<-p
if (index.target[1]>p) {print("Error: Maximum number of parallelizations excedeed")} else {
imp<-array(0,c(p,index.target[2]-index.target[1]+1,nclasses))
index<-seq(1,p)
for (j in 1:nclasses) { X[[j]] <- t(apply(X[[j]], 1, function(x) { (x - mean(x)) / sd(x) } ))
sampsize[j]<-dim(X[[j]])[2] }
tot<-max(sampsize);
print(is.null(W))
if (is.null(W)) { # -- implement standard JRF
j.s=0
for (j in index.target[1]:index.target[2]){
j.s=j.s+1;
covar<-matrix(0,(p-1)*nclasses,tot)
y<-matrix(0,nclasses,tot)
cov.num<-sum(genes.name!=genes.name[j])
for (c in 1:nclasses) {
y[c,seq(1,sampsize[c])]<-as.matrix(X[[c]][j,])
covar[seq((c-1)*(cov.num)+1,c*(cov.num)),seq(1,sampsize[c])]<-X[[c]][genes.name!=genes.name[j],]
}
jrf.out<-JRF_onetarget(x=covar,y=y,mtry=mtry,importance=TRUE,sampsize=sampsize,nclasses=nclasses,ntree=ntree)
for (s in 1:nclasses) imp[genes.name!=genes.name[j],j.s,s]<-importance(jrf.out,scale=FALSE)[seq((cov.num)*(s-1)+1,(cov.num)*(s-1)+cov.num)] #- save importance score for net1
}
}
out<-list(num.par=num.par,model="iJRF",importance=imp,genes.name=genes.name,site.name=site.name)
return(out)
}
}
"iRafNet_parallel" <- function(X,W,ntree=NULL,mtry=NULL,genes.name,parallel) {
X<-t(X[[1]])
p<-dim(X)[2]
if (is.null(ntree)) ntree=1000
if (is.null(genes.name)) genes.name=paste("G",seq(1,p),sep="")
if (is.null(W)) W=matrix(1,p,p)
if (is.null(mtry)) mtry=sqrt(p)
num.par<-parallel[1]; num.targets<-parallel[2]
index.target<-c(round(p/num.targets)*(num.par-1)+1,round(p/num.targets)*num.par);
if (index.target[2]>p) index.target[2]<-p
if (index.target[1]>p) {print("Error: Maximum number of parallelizations excedeed")} else {
imp<-matrix(0,p,index.target[2]-index.target[1]+1)
X <- (apply(X, 2, function(x) { (x - mean(x)) / sd(x) } ))
j.s=0;
for (j in index.target[1]:index.target[2]){
j.s=j.s+1;
y<-X[,j];
weights.rf<-as.matrix(W[,j]);
weights.rf[j]<-0
weights.rf<-weights.rf/sum(weights.rf);
w.sorted<-sort(weights.rf,decreasing = FALSE,index.return=T)
index<-w.sorted$ix
x.sorted<-X[,index]
w.sorted<-w.sorted$x
rout<-irafnet_onetarget(x=x.sorted,y=as.double(y),importance=TRUE,mtry=round(sqrt(p-1)),ntree=1000,
sw=as.double(w.sorted))
imp[index,j.s]<-c(importance(rout))
}
out<-list(num.par=num.par,model="iRafNet",importance=imp,genes.name=genes.name)
}
return(out)
}
# --- MAIN function
"iJRFNet_sitelevel_parallel" <-
function(X, W=NULL,ntree=NULL,mtry=NULL,model=NULL,genes.name,ptm.name=NULL,parallel,site.name=NULL) {
if (is.null(model)) {print("Error: Specify Model")} else {
if (is.null(ntree)) ntree=1000
if (model=="iJRF") out<-iJRF_sitelevel_parallel(X=X,W=W,ntree=ntree,mtry=mtry,genes.name=genes.name,parallel=parallel,site.name=site.name)
if (model=="iRafNet") out<-iRafNet_parallel(X=X, W=W,ntree=ntree,mtry=mtry,genes.name=genes.name,parallel=parallel)
if (model=="ptmJRF") out<-ptmJRF_parallel(X=X,ntree=ntree,mtry=mtry,genes.name=genes.name,ptm.name=ptm.name,parallel=parallel)
return(out)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.