#https://gdc.cancer.gov/about-data/publications/coadread_2012
#library(dendextend)
#library(foreach)
###
library(aricode)
library(SNFtool)
library(cluster)
#library(iClusterPlus)
#library(clustRviz)
library(PINSPlus)
#library(Spectrum)
library(survival)
library(SNFtool)
library(HCfused)
#library(hcfusedpkg)
source("~/GitHub/HC-fused/application/NEMO.R")
source("~/GitHub/HC-fused/application/TCGA_clinical_enrichment.R")
do.LOG <- FALSE
do.PCA <- FALSE
do.SNF <- TRUE
do.PINSPLUS <- TRUE
do.NEMO <- TRUE
do.HCfused <- TRUE
do.PAREA1 <- TRUE
do.PAREA2 <- TRUE
cat("Reading in TCGA data ... \n")
#aml, gbm, lung, sarcoma, colon, liver, ovarian, breast, kidney, melanoma
cancertype <- "kidney"
LOC <- paste("~/TCGA_data/NAR Data/",cancertype,"/", sep="")
#mRNA
mRNAX <- t(read.table(paste(LOC,"exp", sep="")))
#Methy
MethyX <- t(read.table(paste(LOC,"methy", sep="")))
#miRNA
miRNAX <- t(read.table(paste(LOC,"mirna", sep="")))
#CLIN
survivalX <- read.table(paste(LOC,"survival", sep=""), header=TRUE)
# define the patients
patientsX <- intersect(intersect(rownames(mRNAX),rownames(MethyX)),rownames(miRNAX))
n.iter=30
P_SNF <- rep(NaN,n.iter)
P_PINS <- rep(NaN,n.iter)
P_FUSED <- rep(NaN,n.iter)
#P_SPECTRUM <- rep(NaN,n.iter)
P_NEMO <- rep(NaN,n.iter)
P_PAREA1 <- rep(NaN,n.iter)
P_PAREA2 <- rep(NaN,n.iter)
K_SNF <- rep(NaN,n.iter)
K_PINS <- rep(NaN,n.iter)
K_FUSED <- rep(NaN,n.iter)
#P_SPECTRUM <- rep(NaN,n.iter)
K_NEMO <- rep(NaN,n.iter)
K_PAREA1 <- rep(NaN,n.iter)
K_PAREA2 <- rep(NaN,n.iter)
C_SNF <- rep(NaN,n.iter)
C_PINS <- rep(NaN,n.iter)
C_FUSED <- rep(NaN,n.iter)
#P_SPECTRUM <- rep(NaN,n.iter)
C_NEMO <- rep(NaN,n.iter)
C_PAREA1 <- rep(NaN,n.iter)
C_PAREA2 <- rep(NaN,n.iter)
CLIN_SNF <- vector("list", n.iter)
CLIN_PINS <- vector("list", n.iter)
CLIN_FUSED <- vector("list", n.iter)
CLIN_NEMO <- vector("list", n.iter)
CLIN_PAREA1 <- vector("list", n.iter)
CLIN_PAREA2 <- vector("list", n.iter)
this_method = "ward.D"
for (xx in 1:n.iter){
cat(xx, "of", n.iter,"\n")
patients <- sample(patientsX,100)
# DELETE again !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#patients <- patientsX
mRNA <- mRNAX[patients,]
Methy <- MethyX[patients,]
miRNA <- miRNAX[patients,]
if(do.LOG==TRUE){
ids <- which(mRNA==0)
if(length(ids)!=0){
mRNA[ids] <- min(mRNA[-ids])
mRNA <- log(mRNA)
}
ids <- which(Methy==0)
if(length(ids)!=0){
Methy[ids] <- min(Methy[-ids])
Methy <- log(Methy)
}
ids <- which(miRNA==0)
if(length(ids)!=0){
miRNA[ids] <- min(miRNA[-ids])
miRNA <- log(miRNA)
}
}# End of do LOG
#normalization
mRNA = standardNormalization(mRNA)
Methy = standardNormalization(Methy)
miRNA = standardNormalization(miRNA)
#PCA
if(do.PCA==TRUE){
zero <- apply(mRNA,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(mRNA[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(mRNA[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#mRNA <- pca$x[,1:id]
mRNA <- pca$x[,]
zero <- apply(Methy,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(Methy[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(Methy[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#Methy <- pca$x[,1:id]
Methy <- pca$x[,]
zero <- apply(miRNA,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(miRNA[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(miRNA[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#miRNA <- pca$x[,1:id]
miRNA <- pca$x[,]
}# End of IF PCA
if(is.element(cancertype,c("breast","lung","gbm"))){
patients <- tolower(patients)
patients <- strsplit(patients,".", fixed=TRUE)
patients <- sapply(patients, function(x){paste(x[1:3],collapse=".")})
ids <- match(patients,as.character(survivalX[,1]))
###########
}else{
#for all other
ids <- match(gsub(".", "-", patients, fixed=TRUE),as.character(survivalX[,1]))
}
survival <- survivalX[ids,]
#print(table(survival[,3]))
#### CLUSTERING
## HCfused - HC.iter=20 !!!
#res <- HC_fused_subtyping(list(mRNA,Methy,miRNA), max.k=10,
# HC.iter=30, use_opt_code=TRUE)
#cl_fused <- res$cluster
## SNF ######################################################
if(do.SNF){
## First, set all the parameters:
K = 20;##number of neighbors, usually (10~30)
alpha = 0.5; ##hyperparameter, usually (0.3~0.8)
NIT = 10; ###Number of Iterations, usually (10~20)
#datGE = standardNormalization(mRNA)
#datME = standardNormalization(Methy)
#datMI = standardNormalization(miRNA)
PSMgeneE = dist2(as.matrix(mRNA),as.matrix(mRNA));
PSMmethy = dist2(as.matrix(Methy),as.matrix(Methy));
PSMmir = dist2(as.matrix(miRNA),as.matrix(miRNA));
W1 = affinityMatrix(PSMgeneE, K, alpha)
W2 = affinityMatrix(PSMmethy, K, alpha)
W3 = affinityMatrix(PSMmir, K, alpha)
W = SNF(list(W1,W2,W3), K, NIT)
#Groups with SNF
C = estimateNumberOfClustersGivenGraph(W)[[1]] #1 is eigen gap
groupSNF = spectralClustering(W,C);
names(groupSNF) <- survival$PatientID
# Clinical enrichment
CLIN_SNF[[xx]] <- check.clinical.enrichment(groupSNF,
subtype.name=cancertype)
}
## PINSPLUS
#result <- SubtypingOmicsData(dataList = list(mRNA,Methy,miRNA), iterMin=20)
if(do.PINSPLUS){
result <- SubtypingOmicsData(dataList = list(mRNA,Methy,miRNA), iterMin=20,
verbose=FALSE, kMax=10,
clusteringMethod="kmeans")
cl_pins <- result$cluster2
names(cl_pins) <- survival$PatientID
# Clinical enrichment
CLIN_PINS[[xx]] <- check.clinical.enrichment(cl_pins,
subtype.name=cancertype)
}
#NEMO
if(do.NEMO){
omics_list = list(as.data.frame(t(mRNA)),as.data.frame(t(Methy)),as.data.frame(t(miRNA)))
cl_nemo = nemo.clustering(omics_list,num.neighbors=20)
names(cl_nemo) <- survival$PatientID
# Clinical enrichment
CLIN_NEMO[[xx]] <- check.clinical.enrichment(cl_nemo,
subtype.name=cancertype)
}
if(do.HCfused){
HC.iter=30
res <- HC_fused_subtyping(list(mRNA,Methy,miRNA), max.k=10,
HC.iter=HC.iter, use_opt_code = TRUE)
cl_fused <- res$cluster
names(cl_fused) <- survival$PatientID
# Clinical enrichment
CLIN_FUSED[[xx]] <- check.clinical.enrichment(cl_fused,
subtype.name=cancertype)
}
if(do.PAREA1){
## HCfused - original
HC.iter=30
# Available methods
methods = c("single", "complete", "average", "mcquitty", "ward.D",
"ward.D2", "centroid", "median")
#print("##################")
#print("GENTIC ALGORITHM")
#print("##################")
# Perform the genetic algorithm
res1 <- HC_fused_subtyping_ga(list(mRNA, Methy, miRNA))
#print(round(res1@solution))
sel <- methods[round(res1@solution)]
#print("####################")
#print("Selected Methods:")
#print(sel)
#print("####################")
res2 <- HC_fused_subtyping_ens(list(mRNA,Methy,miRNA),
max.k=5,
this_method=c(sel[1],sel[2]),
HC.iter=HC.iter)
cl_parea1 <- res2$cluster
names(cl_parea1) <- survival$PatientID
# Clinical enrichment
CLIN_PAREA1[[xx]] <- check.clinical.enrichment(cl_parea1,
subtype.name=cancertype)
}
if(do.PAREA2){
## HCfused - original
HC.iter=30
# Available methods
methods = c("single", "complete", "average", "mcquitty", "ward.D",
"ward.D2", "centroid", "median")
# Perform the genetic algorithm
res1 <- HC_fused_subtyping_ga2(list(mRNA, Methy, miRNA))
sel <- methods[round(res1@solution)]
res2 <- HC_fused_subtyping_ens2(list(mRNA,Methy,miRNA),
max.k=5,
this_method=sel,#c(sel[1],sel[2]),
HC.iter=HC.iter)
cl_parea2 <- res2$cluster
names(cl_parea2) <- survival$PatientID
# Clinical enrichment
CLIN_PAREA2[[xx]] <- check.clinical.enrichment(cl_parea2,
subtype.name=cancertype)
}
#Spectrum #########################
#one <- as.data.frame(t(x_mRNA))
#two <- as.data.frame(t(x_Methy))
#three <- as.data.frame(t(x_miRNA))
#spec_list <- list(one=one, one=two, three=three)
# res_spec <- Spectrum::Spectrum(spec_list, showres=FALSE, silent=TRUE)
# cl_spec <- res_spec$assignments
#rm(res_spec)
#gc()
###
#surv <- Surv(survival, censor)
#sum.surv <- summary(coxph(surv ~ group))
#c_index <- sum.surv$concordance
### Survival
if(do.SNF){
groups <- factor(groupSNF)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_snf <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_snf)
P_SNF[xx] = round(summary(coxFit)$sctest[3],digits = 40);
K_SNF[xx] = length(unique(groups))
C_SNF[xx] = summary(coxFit)$concordance
}
if(do.PINSPLUS){
groups <- factor(cl_pins)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_pins <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_pins)
P_PINS[xx] = round(summary(coxFit)$sctest[3],digits = 40);
K_PINS[xx] = length(unique(groups))
C_PINS[xx] = summary(coxFit)$concordance
}
if(do.NEMO){
groups <- factor(cl_nemo)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_nemo <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_NEMO[xx] = round(summary(coxFit)$sctest[3],digits = 40);
K_NEMO[xx] = length(unique(groups))
C_NEMO[xx] = summary(coxFit)$concordance
}
if(do.HCfused){
groups <- factor(cl_fused)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_nemo <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_FUSED[xx] = round(summary(coxFit)$sctest[3],digits = 40);
K_FUSED[xx] = length(unique(groups))
C_FUSED[xx] = summary(coxFit)$concordance
}
if(do.PAREA1){
groups <- factor(cl_parea1)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_nemo <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_PAREA1[xx] = round(summary(coxFit)$sctest[3],digits = 40);
K_PAREA1[xx] = length(unique(groups))
C_PAREA1[xx] = summary(coxFit)$concordance
}
if(do.PAREA2){
groups <- factor(cl_parea2)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_nemo <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_PAREA2[xx] = round(summary(coxFit)$sctest[3],digits = 40);
K_PAREA2[xx] = length(unique(groups))
C_PAREA2[xx] = summary(coxFit)$concordance
}
#RESX <- cbind(P_SNF,P_PINS,P_NEMO,P_FUSED, P_PAREA1, P_PAREA2)
#RESX <- cbind(K_SNF,K_PINS,K_NEMO,K_FUSED,K_PAREA1,K_PAREA2)
RESX <- cbind(C_SNF,C_PINS,C_NEMO,C_FUSED,C_PAREA1,C_PAREA2)
colnames(RESX) <- c("SNF","PINS","NEMO","HCFUSED","PAREA1","PAREA2")
print(CLIN_FUSED)
# What the hack does manipulate the seed?
rm(.Random.seed, envir=globalenv())
}#end of loop
## save clinical enrichment
CLIN_ENRICH = Reduce('rbind',CLIN_FUSED)
write.table(CLIN_ENRICH, paste("HCfused_CLIN_ENRICH2_",cancertype,".txt", sep=""))
CLIN_ENRICH = Reduce('rbind',CLIN_SNF)
write.table(CLIN_ENRICH, paste("SNF_CLIN_ENRICH2_",cancertype,".txt", sep=""))
CLIN_ENRICH = Reduce('rbind',CLIN_PINS)
write.table(CLIN_ENRICH, paste("PINS_CLIN_ENRICH2_",cancertype,".txt", sep=""))
CLIN_ENRICH = Reduce('rbind',CLIN_NEMO)
write.table(CLIN_ENRICH, paste("NEMO_CLIN_ENRICH2_",cancertype,".txt", sep=""))
CLIN_ENRICH = Reduce('rbind',CLIN_PAREA1)
write.table(CLIN_ENRICH, paste("PAREA1_CLIN_ENRICH2_",cancertype,".txt", sep=""))
CLIN_ENRICH = Reduce('rbind',CLIN_PAREA2)
write.table(CLIN_ENRICH, paste("PAREA2_CLIN_ENRICH2_",cancertype,".txt", sep=""))
stop("Allet jut!")
RESULT <- cbind(P_SNF, P_PINS, P_NEMO)
RESULT_log <- -log10(RESULT)
colnames(RESULT_log) <- c("SNF","PINSplus", "NEMO")
boxplot(RESULT_log, col="grey", ylab="-log10(logrank p-value)", outline=FALSE)
abline(h=-log10(0.05), col="red")
stop("Allet jut!")
library(ggplot2)
library(reshape)
## Paper plots
par(mfrow=c(2,2))
GBM_OTHER <- read.table("GBM_OTHER.txt")
colnames(GBM_OTHER) <- c("SNF","PINSplus","NEMO")
GBM_ENS <- read.table("GBM_ENSEMBLE.txt")
KIDNEY_OTHER <- read.table("KIDNEY_OTHER.txt")
colnames(KIDNEY_OTHER) <- c("SNF","PINSplus","NEMO")
KIDNEY_ENS <- read.table("KIDNEY_ENSEMBLE.txt")
LIVER_OTHER <- read.table("LIVER_OTHER.txt")
colnames(LIVER_OTHER) <- c("SNF","PINSplus","NEMO")
LIVER_ENS <- read.table("LIVER_ENSEMBLE.txt")
SARCOMA_OTHER <- read.table("SARCOMA_OTHER.txt")
colnames(SARCOMA_OTHER) <- c("SNF","PINSplus","NEMO")
SARCOMA_ENS <- read.table("SARCOMA_ENSEMBLE.txt")
boxplot(-log10(cbind(GBM_OTHER,GBM_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",3),rep("cadetblue",4)),
main="GBM")
abline(h=-log10(0.05), col="red")
boxplot(-log10(cbind(KIDNEY_OTHER,KIDNEY_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",3),rep("cadetblue",4)),
main="KIRC")
abline(h=-log10(0.05), col="red", main="KIRC")
boxplot(-log10(cbind(LIVER_OTHER,LIVER_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",3),rep("cadetblue",4)),
main="LIHC")
abline(h=-log10(0.05), col="red", main="LIHC")
boxplot(-log10(cbind(SARCOMA_OTHER,SARCOMA_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",3),rep("cadetblue",4)),
main="SARC")
abline(h=-log10(0.05), col="red", main="SARC")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.