#' toolCubicFunctionDisaggregate
#'
#' Estimates cubic function inverses based on a weight factor that sum up to the
#' original cubic function (sum in the x-axis)
#'
#' Use case: disaggregate a single region cubic cost function to multiple country
#' cubic functions weighted by a contribution factor. The sum of the countries
#' function output is equal to the original regional function.
#'
#' input: coefficients of the n-th country level cubic cost function.
#'
#' Description of the problem: the disaggregation of functions that represent unit
#' costs (or prices) in the y-axis and quantities in the x-axis require operations
#' with the inverse of the original functions. As complex functions present
#' analytically challenging inverse function derivations, we adopt a sampling
#' method to derive the function that corresponds to the sum of cubic function
#' inverses.
#'
#' Further extensions: the R function can be extended to support more complex curve
#' estimations (beyond third degree), whenever the mathematical function have a well
#' defined inverse function in the selected boundaries.
#'
#' @param x magclass object that should be aggregated or data frame with
#' coefficients as columns.
#' @param weight magclass object containing weights which should be considered
#' for a weighted aggregation. The provided weight should only contain positive
#' values, but does not need to be normalized (any positive number>=0 is allowed).
#' @param rel relation matrix containing a region mapping.
#' A mapping object should contain 2 columns in which each element of x
#' is mapped to the category it should belong to after (dis-)aggregation
#' @param xLowerBound numeric. Lower bound for x sampling (default=0).
#' @param xUpperBound numeric. Upper bound for x sampling (default=100).
#' @param returnMagpie boolean. if true, the function will return a single data table
#' with all the countries in MagPie format. returnChart and returnSample are set to
#' FALSE automatically if this option is active (default=TRUE).
#' @param returnCoeff boolean. Return estimated coefficients (default=TRUE).
#' @param returnChart boolean. Return chart (default=FALSE).
#' @param returnSample boolean. Return samples used on estimation (default=FALSE).
#' @param numberOfSamples numeric. NUmber of y-axis samples used on estimation
#' (default=1e3).
#' @param unirootLowerBound numeric. Lower bound to search for inverse solution in the
#' initial bounds (default = -10).
#' @param unirootUpperBound numeric. Upper bound to search for inverse solution in the
#' initial bounds (default = 1e100).
#' @param colourPallete vector. colour pallete to use on chart (default=FALSE).
#' @param label list. List of chart labels (default=list(x = "x", y = "y", legend =
#' "legend")).
#'
#' @return return: returns a list of magpie objects containing the coefficients for the
#' aggregate function. If returnMagpie is FALSE, returns a list containing the
#' coefficients for the aggregate function (returnCoeff=TRUE), charts (returnChart=FALSE)
#' and/or samples used in the estimation (returnSample=FALSE).
#'
#' @author Renato Rodrigues
#' @export
#' @seealso \code{\link{toolCubicFunctionAggregate}}
#' @examples
#'
#' # Example
#' # LAM coefficients
#' df <- setNames(data.frame(30, 50, 0.34369, 2), c("c1", "c2", "c3", "c4"))
#' row.names(df) <- "LAM"
#' # weight
#' weight <- setNames(c(21, 0, 579, 3, 228), c("ARG", "BOL", "BRA", "CHL", "COL"))
#' # maxExtraction (upper limit for function estimation)
#' maxExtraction <- 100
#' # output
#' output <- toolCubicFunctionDisaggregate(df, weight,
#' xUpperBound = maxExtraction,
#' returnMagpie = FALSE, returnChart = TRUE, returnSample = TRUE,
#' label = list(x = "Cumulated Extraction", y = "Cost", legend = "Region Fuel Functions")
#' ) #' output$chart
#' output$coeff
#' output$chart
toolCubicFunctionDisaggregate <- function(x,
weight,
rel = NULL,
xLowerBound = 0,
xUpperBound = 100,
returnMagpie = TRUE,
returnCoeff = TRUE,
returnChart = FALSE,
returnSample = FALSE,
numberOfSamples = 1e3,
unirootLowerBound = -10,
unirootUpperBound = 1e100,
colourPallete = FALSE,
label = list(x = "x", y = "y", legend = "legend")) {
data <- x
### Start of cubicFitDisaggregate function
cubicFitDisaggregate <- function(data, weight, xLowerBound = 0, xUpperBound = 100, returnCoeff = TRUE, returnChart = FALSE, returnSample = FALSE, numberOfSamples = 1e3, unirootLowerBound = -10, unirootUpperBound = 1e100, colourPallete = FALSE, label = list(x = "x", y = "y", legend = "legend")) {
# initialize coefficients list
coeffList <- lapply(names(weight), function(x) {
row <- rep(0, length(names(data)))
names(row) <- names(data)
return(row)
})
names(coeffList) <- names(weight)
if (length(weight[weight != 0]) == 1) { # no need to disaggregate a single function
# preparing results
result <- list()
singleWeight <- names(weight[weight != 0])
coeffList[[singleWeight]][] <- data
if (returnChart == TRUE) {
thirdDegreeFunction <- function(x) {
return(as.numeric(coeffList[[singleWeight]][1]) + as.numeric(coeffList[[singleWeight]][2]) * x + as.numeric(coeffList[[singleWeight]][3]) * x^2 + as.numeric(coeffList[[singleWeight]][4]) * x^3)
}
p <- ggplot2::ggplot(data = NULL)
p <- p + ggplot2::xlim(xLowerBound, xUpperBound)
p <- p + ggplot2::stat_function(fun = thirdDegreeFunction, size = 1, ggplot2::aes(colour = "_aggregated function", linetype = "_aggregated function"), na.rm = TRUE)
p <- p + ggplot2::scale_linetype_manual(values = c("solid"), guide = FALSE)
p <- p + ggplot2::labs(colour = label$legend, x = label$x, y = label$y)
result$chart <- p # return chart
}
if (returnCoeff == TRUE) { # return coeff of estimated function
if (length(result) == 0) {
result <- coeffList
} else {
result$coeff <- coeffList
}
}
return(result)
}
# function to be disaggregated
fTotal <- function(x) {
as.numeric(data[1]) + as.numeric(data[2]) * x + as.numeric(data[3]) * x^2 + as.numeric(data[4]) * x^3
}
# Boundaries for which all functions are defined
# X (= sum X of each function)
maxX <- xUpperBound
minX <- xLowerBound
# Y
maxY <- fTotal(xUpperBound)
minY <- fTotal(xLowerBound)
minY <- max(c(0, minY)) # negative y do not make sense (avoid negative prices)
# Sampling
# sampling x
samples <- data.frame(x = seq(from = minX, to = maxX, length.out = numberOfSamples))
# sampling y
samples$y <- fTotal(samples$x)
# sampling y
totalWeight <- sum(weight)
for (rowName in names(weight)) {
samples[, (paste0(rowName, ".x"))] <- samples$x * (weight[rowName] / totalWeight)
}
samples[samples < 0] <- 0 # make sure all samples are greater or equal to zero
# estimating functions to each row from the new samples created from weights
for (rowName in names(weight)) {
# use nls to force positive coefficients
current <- data.frame(x = samples[paste0(rowName, ".x")], y = samples[, "y"])
names(current) <- c("x", "y")
df <- data.frame(1, current$x, current$x^2, current$x^3)
df <- as.matrix(df)
newFunction <- nnls::nnls(df, current$y)
newFunctionCoeff <- newFunction$x
names(newFunctionCoeff) <- names(data)
coeffList[[rowName]][] <- newFunctionCoeff
}
# preparing results
result <- list()
if (returnSample == TRUE) {
result$sample <- samples # return samples table
}
if (returnChart == TRUE) {
# estimated functions
fY <- lapply(coeffList, function(coef) {
function(x) {
as.numeric(coef[1]) + as.numeric(coef[2]) * x + as.numeric(coef[3]) * x^2 + as.numeric(coef[4]) * x^3
}
})
p <- ggplot2::ggplot(samples, ggplot2::aes(samples$x, samples$y, group = 1)) +
ggplot2::coord_cartesian(ylim = c(0, max(samples$y)))
p <- p + ggplot2::stat_function(fun = fTotal, size = 1, ggplot2::aes(colour = "_aggregated function", linetype = "_aggregated function"), na.rm = TRUE)
for (i in 1:(length(weight))) {
p <- p + eval(parse(text = paste0("ggplot2::stat_function(fun=fY[[\"", as.character(names(weight)[i]), "\"]], ggplot2::aes(colour = \"", as.character(names(weight)[i]), "\" , linetype = \"", as.character(names(weight)[i]), "\"), na.rm=TRUE)"))) # hack to allow legend
}
if (!(colourPallete[1] == FALSE) & (length(colourPallete) >= length(weight))) {
p <- p + ggplot2::scale_colour_manual(label$legend, values = colourPallete)
}
p <- p + ggplot2::scale_linetype_manual(values = c("solid", rep.int("dashed", length(weight))), guide = FALSE)
p <- p + ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(linetype = c("solid", rep.int("dashed", length(weight))))))
p <- p + ggplot2::labs(colour = label$legend, x = label$x, y = label$y)
result$chart <- p # return chart
}
if (returnCoeff == TRUE) { # return coeff of estimated function
if (length(result) == 0) {
result <- coeffList
} else {
result$coeff <- coeffList
}
}
return(result)
}
### End of cubicFitDisaggregate function
# pre processing data formats and executing estimations
if (is.magpie(data)) {
df <- as.data.frame(data)
# splitting large dimensional magpie objects
dataNames <- names(df[, grep("Data", names(df))]) # all data names
dataNames <- dataNames[-length(dataNames)] # remove last element (coefficient labels)
factorGroups <- interaction(df[, dataNames]) # all combinations of Data values
groupsList <- split(df, with(df, factorGroups), drop = TRUE)
# looping through all data sets and estimating the respective aggregated functions
output <- lapply(
seq_along(groupsList),
function(i) {
# preparing data (row names equal to regions, one column for each coefficient)
currentDf <- groupsList[[i]]
currentDf <- currentDf[c(2, length(currentDf) - 1, length(currentDf))] # region, coeff, value
names(currentDf) <- c("Region", "coeff", "value")
currentDf <- reshape2::acast(currentDf, Region ~ coeff, value.var = "value")
currentWeight <- as.data.frame(weight[[names(groupsList[i])]])[c("Value")]
rownames(currentWeight) <- getRegions(weight[[names(groupsList[i])]])
# estimating aggregated function
if (is.null(rel)) { # single aggregated function
out <- cubicFitDisaggregate(currentDf, currentWeight, xLowerBound = xLowerBound, xUpperBound = xUpperBound, returnCoeff = returnCoeff, returnChart = returnChart, returnSample = returnSample, numberOfSamples = numberOfSamples, unirootLowerBound = unirootLowerBound, unirootUpperBound = unirootUpperBound, colourPallete = colourPallete, label = label)
} else { # looping through new regions and estimating the aggregated function
if (returnMagpie == TRUE) {
returnCoeff <- TRUE
returnChart <- FALSE
returnSample <- FALSE
}
from <- ifelse(dim(rel)[2] > 2, 2, 1) # country
to <- ifelse(dim(rel)[2] > 2, 3, 2) # region
out <- sapply(unique(rel[[to]]), function(region) {
currentFilteredDf <- currentDf[region, ]
currentWeight <- currentWeight[rel[from][rel[to] == as.character(region)], ]
names(currentWeight) <- rel[from][rel[to] == as.character(region)]
outRegion <- cubicFitDisaggregate(currentFilteredDf, currentWeight, xLowerBound = xLowerBound, xUpperBound = as.numeric(xUpperBound[region, , names(groupsList[i])]), returnCoeff = returnCoeff, returnChart = returnChart, returnSample = returnSample, numberOfSamples = numberOfSamples, unirootLowerBound = unirootLowerBound, unirootUpperBound = unirootUpperBound, colourPallete = colourPallete, label = label)
return(outRegion)
})
names(out) <- unique(rel[[to]])
if (returnMagpie == TRUE) {
df <- out
df <- data.frame(sapply(unique(names(df)), function(name) df[[name]])) # unlist results
out <- data.frame(t(df[]))
names(out) <- rownames(df)
rownames(out) <- gsub(".*\\.", "", names(df))
out <- stats::reshape(out, direction = "long", varying = names(out), v.names = "Value", timevar = "coeff", times = names(out), idvar = "Region", ids = rownames(out)) # long format
out <- as.magpie(out[, c("Region", "coeff", "Value")], temporal = 0, datacol = 3)
}
}
return(out)
}
)
names(output) <- names(groupsList)
} else {
if (is.null(rel)) { # single aggregated function
output <- cubicFitDisaggregate(data, weight, xLowerBound = xLowerBound, xUpperBound = xUpperBound, returnCoeff = returnCoeff, returnChart = returnChart, returnSample = returnSample, numberOfSamples = numberOfSamples, unirootLowerBound = unirootLowerBound, unirootUpperBound = unirootUpperBound, colourPallete = colourPallete, label = label)
} else { # looping through new regions and estimating the aggregated function
if (returnMagpie == TRUE) {
returnCoeff <- TRUE
returnChart <- FALSE
returnSample <- FALSE
}
from <- ifelse(dim(rel)[2] > 2, 2, 1) # country
to <- ifelse(dim(rel)[2] > 2, 3, 2) # region
output <- sapply(unique(rel[[to]]), function(region) {
currentFilteredDf <- data[region, ]
currentWeight <- weight[rel[from][rel[to] == as.character(region)], ]
outRegion <- cubicFitDisaggregate(currentFilteredDf, currentWeight, xLowerBound = xLowerBound, xUpperBound = xUpperBound, returnCoeff = returnCoeff, returnChart = returnChart, returnSample = returnSample, numberOfSamples = numberOfSamples, unirootLowerBound = unirootLowerBound, unirootUpperBound = unirootUpperBound, colourPallete = colourPallete, label = label)
return(outRegion)
})
names(output) <- unique(rel[[to]])
if (returnMagpie == TRUE) {
df <- output
df <- data.frame(sapply(unique(names(df)), function(name) df[[name]])) # unlist results
output <- data.frame(t(df[]))
names(output) <- rownames(df)
rownames(output) <- gsub(".*\\.", "", names(df))
output <- stats::reshape(output, direction = "long", varying = names(output), v.names = "Value", timevar = "coeff", times = names(output), idvar = "Region", ids = rownames(output)) # long format
output <- as.magpie(output[, c("Region", "coeff", "Value")], temporal = 0, datacol = 3)
}
}
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.