# Test 1 – when nu1 and nu2 are close, would expect 0.5/0.5
mydat <- simulate_data(biphasic = TRUE,
n.species = 1,
n.whales = 12,
min.trials = 2,
max.trials = 4,
psi = 0,
omega = 1,
alpha = 140,
nu = list(c(139, 141)),
tau = c(32, 32),
Lc = c(60, 60.5),
Rc = c(211, 215))
# Test 2 - expect favouring monophasic when tau is big, even when nu1 and nu2 are far apart
mydat <- simulate_data(biphasic = TRUE,
n.species = 1,
n.whales = 12,
min.trials = 2,
max.trials = 4,
psi = 0,
omega = 1,
alpha = 140,
nu = list(c(100, 180)),
tau = c(32, 32),
Lc = c(60, 60.5),
Rc = c(211, 215))
# Test 3 - expect favouring biphasic when tau is small
mydat <- simulate_data(biphasic = TRUE,
n.species = 1,
n.whales = 12,
min.trials = 2,
max.trials = 4,
psi = 0,
omega = 1,
alpha = 140,
nu = list(c(100, 180)),
tau = c(10, 10),
Lc = c(60, 60.5),
Rc = c(211, 215))
# Test 4 - when few animals in one mixture, might favour monophasic
mydat <- simulate_data(biphasic = TRUE,
n.species = 1,
n.whales = 12,
min.trials = 2,
max.trials = 4,
psi = -2,
omega = 1,
alpha = 140,
nu = list(c(100, 180)),
tau = c(10, 10),
Lc = c(60, 60.5),
Rc = c(211, 215))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.