#' @title Runs the spatial epidemic simulation
#'
#' @description Simulates an epidemic using the provided spatial dataset, spatial kernel, contact matrix, and
#' infection parameters.
#'
#' @param spatial_data The spatial dataset containing the population data.
#' @param D The expanded kernel matrix to use for FOI calculation (generated by the \code{\link{calc_beta}}
#' function).
#' @param contact_mat The contact matrix for mixing between age groups.
#' @param beta The beta value for the epidemic (calculated from a given R0 using the \code{\link{calc_beta}}
#' function).
#' @param sigma The recovery rate for the epidemic (must match the one used to calculate beta from R0
#' using the \code{\link{calc_beta}} function).
#' @param stoch Logical. If TRUE, the simulation is stochastic.
#' @param step Size of time step for stochastic simulation, in days (default is 1 day).
#' @param start_area Where to start the epidemic. Default: area with highest population density. If the spatial
#' dataset is a SpatialPolygonsDataFrame, you can specify a string indicating the name of your
#' desired starting area. Alternatively, no matter which type of spatial dataset you have, you can
#' indicate the index of you desired starting area.
#' @param start_num Number of infected individuals to start the epidemic.
#' @param t_max How many days to run the simulation for.
#'
#' @details This functions requires specific objects to run. These can be generated using the \code{\link{prep_simulation}}
#' function (e.g. if you want to simulate an epidemic using the spatial dataset "testdata", you must
#' prep_simulation(test_data) first). The model used is an SIR model, where individuals can be either
#' Susceptible, Infected or Recovered with regards to the disease. This assumes that Infected individuals
#' are infectious, and that Recovered individuals are immune and cannot be reinfected.
#'
#' @return Returns one dataframe object containing the estimates of Susceptible, Infected and Recovered individuals
#' for each time step.
#'
#' @examples
#'
#' #Create a spatial dataset:
#' test_data = raster(nrow=10, ncol=10, xmn=1, xmx=100000, ymn=1, ymx=100000)
#' values(test_data) = runif(100, 1, 1000)
#'
#' #Calculate the parameters for the simulation:
#' prep_simulation(test_data)
#'
#' #Run the simulation:
#' results = run_simulation(test_data, expanded_D, contact_mat, beta)
#'
#' @export
run_simulation = function(spatial_data, D, contact_mat, beta, sigma = 1/2.6, stoch=FALSE, step=1, start_area=NA, start_num=10, t_max=100){
if(class(spatial_data) == "RasterLayer"){
populated_areas = which(!is.na(spatial_data@data@values))
N = spatial_data@data@values[populated_areas]
} else if(class(spatial_data) == "SpatialPolygonsDataFrame"){
N = spatial_data@data$population
} else{
stop("Incorrect spatial dataset! The dataset must be either a RasterLayer or a SpatialPolygonsDataFrame.")
}
num_ages = dim(contact_mat)[1] #derive number of age categories from contact matrix
num_areas = dim(D)[1]/num_ages #derive number of areas from expanded kernel (dim(D)=num_areas*num_ages)
#### SETTING UP POPULATION: ####
#N: total population
#S: susceptibles
#I: infected
#R: recovered
#!!! work in progress, only supports 4 age categories or no age categories at all right now !!!#
if(num_ages == 4){
N = matrix(N, nrow=num_areas, ncol=num_ages)
#set minimum population in an area to 1:
N[which(N<1)] = 1
NN0 = as.vector(N)
N[,1] = N[,1]*(5/81)
N[,2] = N[,2]*(14/81)
N[,3] = N[,3]*(46/81)
N[,4] = N[,4]*(16/81)
#this way, i in the matrix is the area and j the age group e.g. N[1,1] gives pop 0-4 in area 1
S = N
I = matrix(0, nrow=num_areas, ncol=num_ages)
R = I
} else if(num_ages == 1){
N[which(N<1)] = 1
NN0 = as.vector(N)
S = N
I = rep(0, num_areas)
R = I
} else {
stop("Unsupported number of age categories, currently only supports 4 or none.")
}
#### SEEDING: ####
#seeds by making a given number of adults infected in the chosen starting area
if(is.na(start_area)){
#identify area with the most inhabitants:
if(num_ages == 1){
start_area = which.max(N)
} else {
#which area has the highest total population? (rowSums gives total pop in each area since each column is an age group)
start_area = which.max(rowSums(N))
}
}
else if(is.numeric(start_area)){
#extract start area based on index number:
start_area = start_area
}
else{
#extract area based on name:
start_area = which(spatial_data@data$name == start_area)
}
#change pop values in starting area:
if(num_ages == 1){
S[start_area] = S[start_area] - start_num
I[start_area] = I[start_area] + start_num
} else {
S[start_area,3] = S[start_area,3] - start_num
I[start_area,3] = I[start_area,3] + start_num
#3 is the adult age group
}
#### RUN MODEL: ####
#deterministic model:
full_model = function(t, y, .) {
#counter to display progress during model execution:
print(paste0(floor(t/t_max*100), "% done"))
S = y[1:(num_areas*num_ages)]
I = y[(num_areas*num_ages+1):(num_areas*num_ages*2)]
R = y[(num_areas*num_ages*2+1):(num_areas*num_ages*3)]
lambda=beta*S*(D %*% (I/NN0))
dSdt = -lambda
dIdt = lambda - sigma*I
dRdt = sigma*I
list(c(dSdt, dIdt, dRdt))
}
#stochastic model:
if(stoch == TRUE){
#inverse step for cleaner calculations involving this value below:
step = 1/step
S = round(S)
S[which(S==0)] = 1
S = as.vector(S)
I = as.vector(I)
R = as.vector(R)
#adjust beta and sigma values according to time step:
beta = beta/step
sigma = sigma/step
#create matrix to store the results:
results = matrix(0, (t_max*step+1), (num_areas*num_ages*3+1))
#adjust the values of the "Time" column:
results[,1] = seq(0,t_max*step,1)
#add the starting population values:
results[1,-1] = c(S,I,R)
#convert sigma from a rate to a probability:
sigma = 1 - exp(-(sigma))
for(t in 1:(t_max*step)){
lambda = beta*(D %*% (I/NN0))
lambda = 1 - exp(-lambda)
for(i in 1:length(N)){
new_inf = rbinom(1,S[i],lambda[i])
rec = rbinom(1, I[i], sigma)
S[i] = S[i] - new_inf
I[i] = I[i] + new_inf - rec
R[i] = R[i] + rec
}
#store results:
results[t+1,-1] = c(S,I,R)
}
} else {
#set method to rk4 rather than default lsoda
#required because otherwise deSolve requires too much RAM
#more consistent performance, but slower when smaller number of areas
#parms=0 because rk4 requires a definition of parms, but effectively the function inherits the parameters from the parent environment
results = deSolve::ode(method="rk4", func=full_model, y=c(S,I,R), times=seq(0,t_max,1), parms=0)
}
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.